Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(7): 1047-1059, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511740

RESUMO

ADAM metallopeptidase domain 9 (ADAM9) is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an IHC screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody-drug conjugate (ADC) development. Here, we describe the preclinical evaluation of IMGC936, a novel ADC targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. In addition, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).


Assuntos
Imunoconjugados , Proteínas ADAM , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Imunoconjugados/química , Proteínas de Membrana/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Immunol ; 191(2): 892-901, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23776175

RESUMO

Recognition of microbial products by TLRs is critical for mediating innate immune responses to invading pathogens. In this study, we identify a novel scaffold protein in TLR4 signaling called SAM and SH3 domain containing protein 1 (SASH1). Sash1 is expressed across all microvascular beds and functions as a scaffold molecule to independently bind TRAF6, TAK1, IκB kinase α, and IκB kinase ß. This interaction fosters ubiquitination of TRAF6 and TAK1 and promotes LPS-induced NF-κB, JNK, and p38 activation, culminating in increased production of proinflammatory cytokines and increased LPS-induced endothelial migration. Our findings suggest that SASH1 acts to assemble a signaling complex downstream of TLR4 to activate early endothelial responses to receptor activation.


Assuntos
Células Endoteliais/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Movimento Celular , Ativação Enzimática , Quinase I-kappa B/metabolismo , Imunidade Inata , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/imunologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Interferência de RNA , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Ubiquitinação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...