Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 792, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933488

RESUMO

Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Camundongos , Neovascularização Patológica/metabolismo , Fotoperíodo , Retina/metabolismo
2.
Invest Ophthalmol Vis Sci ; 61(13): 36, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33237298

RESUMO

Purpose: Retinopathy of prematurity (ROP) is a severe complication of premature infants, leading to vision loss when untreated. Presently, the molecular mechanisms underlying ROP are still far from being clearly understood. This study sought to investigate whether thyroid hormone (TH) signaling contributes to the neuropathology of ROP using the mouse model of ROP to evaluate longitudinal photoreceptor function. Methods: Animals were exposed to hyperoxia from P7 to P12 to induce retinopathy, thereafter the animals were returned to room air (normoxia). The thyroid-activating enzyme type 2 deiodinases (Dio2) knockout (KO) mice and the littermate controls that were exposed to hyperoxia or maintained in room air and were then analyzed. The retinal function was evaluated using electroretinograms (ERGs) at three and seven weeks followed by histologic assessments with neuronal markers to detect cellular changes in the retina. Rhodopsin protein levels were measured to validate the results obtained from the immunofluorescence analyses. Results: In the ROP group, the photoreceptor ERG responses are considerably lower both in the control and the Dio2 KO animals at P23 compared to the non-ROP group. In agreement with the ERG responses, loss of Dio2 results in mislocalized cone nuclei, and abnormal rod bipolar cell dendrites extending into the outer nuclear layer. The retinal function is compromised in the adult Dio2 KO animals, although the cellular changes are less severe. Despite the reduction in scotopic a-wave amplitudes, rhodopsin levels are similar in the adult mice, across all genotypes irrespective of exposure to hyperoxia. Conclusions: Using the mouse model of ROP, we show that loss of Dio2 exacerbates the effects of hyperoxia-induced retinal deficits that persist in the adults. Our data suggest that aberrant Dio2/TH signaling is an important factor in the pathophysiology of the visual dysfunction observed in the oxygen-induced retinopathy model of ROP.


Assuntos
Modelos Animais de Doenças , Iodeto Peroxidase/fisiologia , Células Fotorreceptoras de Vertebrados/enzimologia , Retinopatia da Prematuridade/enzimologia , Glândula Tireoide/enzimologia , Animais , Animais Recém-Nascidos , Western Blotting , Eletrorretinografia , Ativadores de Enzimas , Hiperóxia/patologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxigênio/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Retinopatia da Prematuridade/fisiopatologia , Rodopsina/metabolismo , Iodotironina Desiodinase Tipo II
3.
FASEB J ; 33(8): 8745-8758, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002540

RESUMO

A single pool of multipotent retinal progenitor cells give rise to the diverse cell types within the mammalian retina. Such cellular diversity is due to precise control of various cellular processes like cell specification, proliferation, differentiation, and maturation. Circadian clock genes can control the expression of key regulators of cell cycle progression and therefore can synchronize the cell cycle state of a heterogeneous population of cells. Here we show that the protein encoded by the circadian clock gene brain and muscle arnt-like protein-1 (Bmal1) is expressed in the embryonic retina and is required to regulate the timing of cell cycle exit. Accordingly, loss of Bmal1 during retinal neurogenesis results in increased S-phase entry and delayed cell cycle exit. Disruption in cell cycle kinetics affects the timely generation of the appropriate neuronal population thus leading to an overall decrease in the number of retinal ganglion cells, amacrine cells, and an increase in the number of the late-born type II cone bipolar cells as well as the Müller glia. Additionally, the mislocalized Müller cells are observed in the photoreceptor layer in the Bmal1 conditional mutants. These changes affect the functional integrity of the visual circuitry as we report a significant delay in visual evoked potential implicit time in the retina-specific Bmal1 null animals. Our results demonstrate that Bmal1 is required to maintain the balance between the neural and glial cells in the embryonic retina by coordinating the timing of cell cycle entry and exit. Thus, Bmal1 plays an essential role during retinal neurogenesis affecting both development and function of the mature retina.-Sawant, O. B., Jidigam, V. K., Fuller, R. D., Zucaro, O. F., Kpegba, C., Yu, M., Peachey, N. S., Rao, S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Células Ependimogliais/metabolismo , Neurogênese , Retina/citologia , Fatores de Transcrição ARNTL/genética , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Ciclo Celular , Relógios Circadianos , Células Ependimogliais/citologia , Potenciais Evocados Visuais , Camundongos , Retina/embriologia , Retina/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...