Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35159067

RESUMO

BACKGROUND: The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS: We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot ß-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS: Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS: McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.

2.
Breast Cancer (Auckl) ; 15: 11782234211034937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34376983

RESUMO

The taro plant, Colocasia esculenta, contains bioactive proteins with potential as cancer therapeutics. Several groups have reported anti-cancer activity in vitro and in vivo of taro-derived extracts (TEs). We reported that TE inhibits metastasis in a syngeneic murine model of Triple-Negative Breast Cancer (TNBC). PURPOSE: We sought to confirm our earlier studies in additional models and to identify novel mechanisms by which efficacy is achieved. METHODS: We employed a panel of murine and human breast and ovarian cancer cell lines to determine the effect of TE on tumor cell viability, migration, and the ability to support cancer stem cells. Two syngeneic models of TNBC were employed to confirm our earlier report that TE potently inhibits metastasis. Cancer stem cell assays were employed to determine the ability of TE to inhibit tumorsphere-forming ability and to inhibit aldehyde dehydrogenase activity. To determine if host immunity contributes to the mechanism of metastasis inhibition, efficacy was assessed in immune-compromised mice. RESULTS: We demonstrate that viability of some, but not all cell lines is inhibited by TE. Likewise, tumor cell migration is inhibited by TE. Using 2 immune competent, syngeneic models of TNBC, we confirm our earlier findings that tumor metastasis is potently inhibited by TE. We also demonstrate, for the first time, that TE directly inhibits breast cancer stem cells. Administration of TE to mice elicits expansion of several spleen cell populations but it was not known if host immune cells contribute to the mechanism by which TE inhibits tumor cell dissemination. In novel findings, we now show that the ability of TE to inhibit metastasis relies on immune T-cell-dependent, but not B cell or Natural Killer (NK)-cell-dependent mechanisms. Thus, both tumor cell-autonomous and host immune factors contribute to the mechanisms underlying TE efficacy. Our long-term goal is to evaluate TE efficacy in clinical trials. Most of our past studies as well as many of the results reported in this report were carried out using an isolation protocol described earlier (TE). In preparation for a near future clinical trial, we have now developed a strategy to isolate an enriched taro fraction, TE-method 2, (TE-M2) as well as a more purified subfraction (TE-M2F1) which can be scaled up under Good Manufacturing Practice (GMP) conditions for evaluation in human subjects. We demonstrate that TE-M2 and TE-M2F1 retain the anti-metastatic properties of TE. CONCLUSIONS: These studies provide further support for the continued examination of biologically active components of Colocasia esculenta as potential new therapeutic entities and identify a method to isolate sufficient quantities under GMP conditions to conduct early phase clinical studies.

3.
Front Vet Sci ; 8: 648766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855056

RESUMO

Septic arthritis of the temporomandibular joint (TMJ) in dogs and other mammals is a rare condition. It is typically associated with notable pain, swelling, and difficulty in opening the mouth. Unlike degenerative TMJ disease, septic arthritis requires urgent intervention. The etiology of the condition may include penetrating trauma, an extension of local infection, such as otitis media, or the hematogenous spread of a pathogen. However, the precise cause may not always be identified. Diagnostic imaging with Computed Tomography (CT), cone-beam CT (CBCT), and/or Magnetic Resonance Imaging (MRI) are helpful for honing the definitive diagnosis and formulating a treatment plan. Subsequently, exploratory surgery may be required to obtain samples for culture and sensitivity and histology and to lavage the joint. In this "methods" article, we provide a detailed description of our approach to diagnosis and management of septic TMJ arthritis in four dogs.

4.
Front Pharmacol ; 11: 1233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982722

RESUMO

Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.

5.
Front Pharmacol ; 11: 819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547404

RESUMO

The cyclooxygenase-2 (COX-2) enzyme is frequently overexpressed in epithelial malignancies including those of the breast, prostate, lung, kidney, ovary, and liver and elevated expression is associated with worse outcomes. COX-2 catalyzes the metabolism of arachidonic acid to prostaglandins. The COX-2 product prostaglandin E2 (PGE2) binds to four G-protein-coupled EP receptors designated EP1-EP4. EP4 is commonly upregulated in cancer and supports cell proliferation, migration, invasion, and metastasis through activation of multiple signaling pathways including ERK, cAMP/PKA, PI3K/AKT, and NF-κB. EP4 antagonists inhibit metastasis in preclinical models. Cancer stem cells, that underlie therapy resistance and disease relapse, are driven by the expression of EP4. Resistance to several chemotherapies is reversed in the presence of EP4 antagonists. In addition to tumor cell-autonomous roles of EP4, many EP4-positive host cells play a role in tumor behavior. Endothelial cell-EP4 supports tumor angiogenesis and lymphangiogenesis. Natural Killer (NK) cells are critical to the mechanism by which systemically administered EP4 antagonists inhibit metastasis. PGE2 acts on EP4 expressed on the NK cell to inhibit tumor target cell killing, cytokine production, and chemotactic activity. Myeloid-derived suppressor cells (MDSCs), that inhibit the development of cytotoxic T cells, are induced by PGE2 acting on myeloid-expressed EP2 and EP4 receptors. Inhibition of MDSC-EP4 leads to maturation of effector T cells and suppresses the induction of T regulatory cells. A number of EP4 antagonists have proven useful in dissecting these mechanisms. There is growing evidence that EP4 antagonism, particularly in combination with either chemotherapy, endocrine therapy, or immune-based therapies, should be investigated further as a promising novel approach to cancer therapy. Several EP4 antagonists have now progressed to early phase clinical trials and we eagerly await the results of those studies.

6.
Stem Cell Res Ther ; 11(1): 115, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169089

RESUMO

BACKGROUND: The ability of mesenchymal stem cells (MSCs) to modulate immune responses inspired a series of clinical trials addressing oral mucosal inflammation. We previously reported on the safety and efficacy of fresh, allogeneic and autologous, adipose-derived mesenchymal stem cells (ASCs) to treat feline gingivostomatitis (FCGS), an oral mucosal inflammatory disease that shares similarities with human oral lichen planus. METHODS: To meet clinical demand and goals for future commercialization, we determined the feasibility of shipping fresh ASCs to distant clinics and extended our pilot studies to expand safety and efficacy data for shipped and non-shipped ASCs in a cohort of 18 FCGS cats enrolled locally and at a few different locations within the USA. RESULTS: We found that ASCs retained their viability, phenotype, and function after shipment. ASCs administered systemically resulted in a 72% positive response rate, identical to that noted in our previous studies. Cats that responded to ASC therapy had a significant decrease in circulating globulin concentration and histological evidence of decreased CD3+ T cells and CD20+ B cells in the oral mucosa. Responder cats also had significantly decreased percentages of CD8lo cells in blood prior to and at 3 months post-ASC therapy. CD8lo cells may serve as a potential "predictor" for response to systemic ASC therapy. CONCLUSION: Fresh feline ASCs can be successfully shipped and administered to cats with FCGS. ASCs modulate the immune response and demonstrate efficacy for chronic oral mucosal inflammatory lesions that are characterized by CD8+ T cell inflammation and T cell activation. FCGS is a potentially useful naturally occurring large animal model of human oral inflammatory diseases.


Assuntos
Células-Tronco Mesenquimais , Tecido Adiposo , Animais , Linfócitos T CD8-Positivos , Gatos , Inflamação , Ativação Linfocitária , Mucosa Bucal
7.
Breast Cancer (Auckl) ; 13: 1178223419873628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619923

RESUMO

We are seeking to identify molecular targets that are relevant to breast cancer cells with stem-like properties. There is growing evidence that cancer stem cells (CSCs) are supported by inflammatory mediators expressed in the tumor microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible, ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have co-opted this receptor to promote tumor cell migration and invasion. There are 2 major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from alternative splicing and results in a protein with a longer N-terminal domain. CXCR3 isoform A is generally considered to play a major role in tumor metastasis. When the entire tumor cell population is examined, CXCR3 isoform B is usually detected at much lower levels than CXCR3A and for this, and other reasons, was not considered to drive tumor progression. We have shown that CXCR3B is significantly upregulated in the subpopulation of breast CSCs in comparison with the bulk tumor cell population in 3 independent breast cancer cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock in strategies increases CSC populations identified by aldehyde dehydrogenase activity or CD44+CD24- phenotype as well as tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced. CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3 allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103 inhibited experimental metastasis. This protective effect is associated with the reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1 pathways. We propose that CXCR3B, expressed on CSC, should be explored further as a novel therapeutic target.

8.
Cancers (Basel) ; 11(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635323

RESUMO

The microtubule-stabilizing agent docetaxel in combination with gemcitabine represents one of the most effective regimens against the aggressive gynecologic tumor leiomyosarcoma (LMS). Upregulation of class III ß-tubulin has previously been shown to confer taxane resistance in a variety of human cancers. Prostaglandin E2 receptor EP4 is linked to progression of a variety of human cancers and may represent a novel target for tumor inhibition in LMS. We evaluated the hypotheses that EP4 and class III ß-tubulin have increased expression in LMS in comparison to normal myometrium or benign tumors and that expression of class III ß-tubulin correlates with resistance to taxanes and poor clinical outcome. Gene expression was examined using TCGA data and correlated with clinicopathologic outcome which demonstrated that class III ß-tubulin is more highly expressed in more aggressive sarcomas with EP4 being widely expressed in all subtypes of sarcoma. Immunohistochemistry for EP4 and class III ß-tubulin was performed on patients with LMS, leiomyomatosis/STUMP, leiomyoma, and normal myometrium. Expression of EP4 and class III ß-tubulin were characterized for cell lines SK-UT-1, SK-UT-1B, and PHM-41 and these cell lines were treated with docetaxel alone and in combination with EP4 inhibitors. In taxane-resistant cell lines that overexpress class III ß-tubulin and EP4, treatment with EP4 inhibitor resulted in at least 2-fold sensitization to docetaxel. Expression of class III ß-tubulin and EP4 in LMS may identify patients at risk of resistance to standard chemotherapies and candidates for augmentation of therapy through EP4 inhibition.

9.
Oncotarget ; 8(4): 6540-6554, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28029661

RESUMO

Cyclooxygenase-2 (COX-2) and its primary enzymatic product, prostaglandin E2 (PGE2), are associated with a poor prognosis in breast cancer. In order to elucidate the factors contributing to intratumoral PGE2 levels, we evaluated the expression of COX-2/PGE2 pathway members MRP4, the prostaglandin transporter PGT, 15-PGDH (PGE2 metabolism), the prostaglandin E receptor EP4, COX-1, and COX-2 in normal, luminal, and basal breast cancer cell lines. The pattern of protein expression varied by cell line reflecting breast cancer heterogeneity. Overall, basal cell lines expressed higher COX-2, higher MRP4, lower PGT, and lower 15-PGDH than luminal cell lines resulting in higher PGE2 in the extracellular environment. Genetic or pharmacologic suppression of MRP4 expression or activity in basal cell lines led to less extracellular PGE2. The key finding is that xenografts derived from a basal breast cancer cell line with stably suppressed MRP4 expression showed a marked decrease in spontaneous metastasis compared to cells with unaltered MRP4 expression. Growth properties of primary tumors were not altered by MRP4 manipulation. In addition to the well-established role of high COX-2 in promoting metastasis, these data identify an additional mechanism to achieve high PGE2 in the tumor microenvironment; high MRP4, low PGT, and low 15-PGDH. MRP4 should be examined further as a potential therapeutic target in basal breast cancer.


Assuntos
Movimento Celular , Dinoprostona/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroxiprostaglandina Desidrogenases/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Metástase Neoplásica , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Propionatos/farmacologia , Quinazolinas/farmacologia , Quinolinas/farmacologia , Interferência de RNA , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Tirfostinas/farmacologia
10.
Lung Cancer ; 101: 88-91, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27794413

RESUMO

BACKGROUND: Elevated COX-2 expression has been correlated with inferior outcome in NSCLC. COX-2 catalyzes the transformation of arachidonate to PGE2. We and others have demonstrated that PGE2 induces proliferation and metastatic spread and immunosuppression through the G protein-coupled EP4 receptor. We hypothesized that EP4 expression on malignant cells would correlate with outcome and patterns of relapse after treatment of LANSCLC stage IIIA (7th edition, N2+). METHODS: Tissue specimens from 41 pts treated for LANSC at UMGCC were obtained. A tissue microarray was prepared and examined for EP4 expression. Intensity of staining was scored semi-quantitatively as 0-4 in both the nuclear and cytoplasmic compartments by a pathologist blinded to the clinical data. RESULTS: EP4 nuclear staining 0-1 vs. 2+ was associated with overall survival, (OS) (44.3 vs. 18 mo; HR=0.41, p=0.024) and numerically superior progression free survival (PFS) (16.4 vs. 10.2 mo, p=0.16). EP4 cytoplasmic staining did not correlate with OS (0-1 vs. 2+, 23.8 vs. 28.8 mo; HR=1.2, p=0.81). Relapse pattern (no relapse or local vs. systemic) did not correlate with EP nuclear staining (p=1.0, X2). CONCLUSIONS: This is the first clinical study of EP4 expression in lung cancer. There was a significant correlation between OS and nuclear EP4 expression, indicating that this is a potential therapeutic target. Studies with AT-007, a specific inhibitor of EP4, are planned to commence this year.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Neoplasias Pulmonares , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
11.
Breast Cancer (Auckl) ; 10: 61-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257388

RESUMO

Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1-EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer.

12.
Nat Commun ; 7: 10339, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842342

RESUMO

Two-pore domain potassium (K2P) channels act to maintain cell resting membrane potential--a prerequisite for many biological processes. KCNK9, a member of K2P family, is implicated in cancer, owing to its overexpression in human tumours and its ability to promote neoplastic cell survival and growth. However, KCNK9's underlying contributions to malignancy remain elusive due to the absence of specific modulators. Here we describe the development of monoclonal antibodies against the KCNK9 extracellular domain and their functional effects. We show that one antibody (Y4) with the highest affinity binding induces channel internalization. The addition of Y4 to KCNK9-expressing carcinoma cells reduces cell viability and increases cell death. Systemic administration of Y4 effectively inhibits growth of human lung cancer xenografts and murine breast cancer metastasis in mice. Evidence for Y4-mediated carcinoma cell autonomous and immune-dependent cytotoxicity is presented. Our study reveals that antibody-based KCNK9 targeting is a promising therapeutic strategy in KCNK9-expressing malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Animais , Western Blotting , Células COS , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Células HEK293 , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Anal Chem ; 87(20): 10462-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26378940

RESUMO

Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.


Assuntos
Neoplasias da Mama/metabolismo , Exossomos/química , Proteoma/análise , Proteômica , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Análise por Conglomerados , Exossomos/metabolismo , Feminino , Humanos , Análise Multivariada , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
14.
Prostaglandins Other Lipid Mediat ; 116-117: 99-103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25433169

RESUMO

The cyclooxygenase-2 (COX-2) enzyme and major lipid product, prostaglandin E2 (PGE2) are elevated in many solid tumors including those of the breast and are associated with a poor prognosis. Targeting this enzyme is somewhat effective in preventing tumor progression, but is associated with cardiotoxic secondary effects when used chronically. PGE2 functions by signaling through four EP receptors (EP1-4), resulting in several different cellular responses, many of which are pro-tumorigenic, and there is growing interest in the therapeutic potential of targeting EP4 and EP2. Other members in this signaling pathway are gaining more attention. PGE2 is transported out of and into cells by two unique transport proteins. Multiple Drug Resistance-Associated Protein 4 (MRP4) and Prostaglandin Transporter (PGT) modulate PGE2 signaling by increasing or decreasing the levels of PGE2 available to cells. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) metabolizes PGE2 and silences the pathway in this manner. The purpose of this review is to summarize the extensive data supporting the importance of the COX-2 pathway in tumor biology with a focus on more recently described pathway members and their role in modulating PGE2 signaling. This review describes evidence supporting roles for MRP4, PGT and 15-PGDH in several tumor types with an emphasis on the roles of these proteins in breast cancer. Defining the importance of these latter pathway members will be key to developing new therapeutic approaches that exploit the tumor-promoting COX-2 pathway.


Assuntos
Dinoprostona/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Dinoprostona/genética , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Transportadores de Ânions Orgânicos/genética
15.
Breast Cancer Res Treat ; 149(2): 403-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537642

RESUMO

There is growing evidence that several chemokine receptors including CXCR3 contribute to metastasis of breast and other cancers, however, in order to target CXCR3 effectively, it is critical to understand the relative contribution of each CXCR3 isoform. Furthermore, the possible contribution of either major CXCR3 isoform (CXCR3-A, CXCR3-B) to cancer stem cell behavior has not been reported. We employed primary invasive ductal carcinomas, a panel of breast cell lines, and a xenograft model of metastatic breast cancer to examine the role of CXCR3 isoforms in the behavior of breast cancer stem-like cells and the contribution of each isoform to metastasis. In primary human breast cancer specimens as well as established breast cancer cell lines, CXCR3-A is more highly expressed than CXCR3-B. Conversely, immortalized normal MCF10A cells express more CXCR3-B relative to CXCR3-A. Overexpression of CXCR3-B in MDA-MB-231 basal-like cells inhibits CXCR3 ligand-stimulated proliferation, which is accompanied by reduced ligand-mediated activation of ERK1/2 and p38 kinases. Likewise, metastatic capacity is reduced in vivo by higher levels of CXCR3-B, and migratory and invasive properties are inhibited in vitro; conversely, silencing of CXCR3-B enhances lung colonization. In contrast to the anti-metastatic and anti-proliferative roles of CXCR3-B in the non-stem cell population, this isoform supports a cancer stem-like cell phenotype. CXCR3-B is markedly elevated in mammosphere-forming parental cells and overexpressing CXCR3-B further enhances mammosphere-forming potential as well as growth in soft agar; stem-like behavior is inhibited in MDA-MB-231shCXCR3-B cells. Targeting of both CXCR3 isoforms may be important to block the stem cell-promoting actions of CXCR3-B, while inhibiting the pro-proliferative and metastasis-promoting functions of CXCR3-A.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Receptores CXCR3/genética , Processamento Alternativo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Feminino , Inativação Gênica , Humanos , Metástase Neoplásica , Prognóstico , Isoformas de Proteínas , Receptores CXCR3/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas
16.
Vet Clin North Am Small Anim Pract ; 44(2): 303-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24580992

RESUMO

The oral examination is an important part of the physical examination of every patient. In neonate and adolescent dogs, it is important to inspect the oral cavity for congenital and acquired dental and oral pathology. This article reviews the more common pediatric and juvenile dental anomalies that affect dogs in order to provide a resource for the basic understanding of the oral cavity in these patients.


Assuntos
Fenda Labial/veterinária , Fissura Palatina/veterinária , Doenças do Cão/patologia , Doenças Dentárias/veterinária , Animais , Cães , Dente Decíduo
17.
Breast Cancer Res Treat ; 143(1): 19-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24281828

RESUMO

The cyclooxygenase pathway is strongly implicated in breast cancer progression but the role of this pathway in the biology of breast cancer stem/progenitor cells has not been defined. Recent attention has focused on targeting the cyclooxygenase 2 (COX-2) pathway downstream of the COX-2 enzyme by blocking the activities of individual prostaglandin E (EP) receptors. Prostaglandin E receptor 4 (EP4) is widely expressed in primary invasive ductal carcinomas of the breast and antagonizing this receptor with small molecule inhibitors or shRNA directed to EP4 inhibits metastatic potential in both syngeneic and xenograft models. Breast cancer stem/progenitor cells are defined as a subpopulation of cells that drive tumor growth, metastasis, treatment resistance, and relapse. Mammosphere-forming breast cancer cells of human (MDA-MB-231, SKBR3) or murine (66.1, 410.4) origin of basal-type, Her-2 phenotype and/or with heightened metastatic capacity upregulate expression of both EP4 and COX-2 and are more tumorigenic compared to the bulk population. In contrast, luminal-type or non-metastatic counterparts (MCF7, 410, 67) do not increase COX-2 and EP4 expression in mammosphere culture. Treatment of mammosphere-forming cells with EP4 inhibitors (RQ-15986, AH23848, Frondoside A) or EP4 gene silencing, but not with a COX inhibitor (Indomethacin) reduces both mammosphere-forming capacity and the expression of phenotypic markers (CD44(hi)/CD24(low), aldehyde dehydrogenase) of breast cancer stem cells. Finally, an orally delivered EP4 antagonist (RQ-08) reduces the tumor-initiating capacity and markedly inhibits both the size of tumors arising from transplantation of mammosphere-forming cells and phenotypic markers of stem cells in vivo. These studies support the continued investigation of EP4 as a potential therapeutic target and provide new insight regarding the role of EP4 in supporting a breast cancer stem cell/tumor-initiating phenotype.


Assuntos
Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Esferoides Celulares , Células Tumorais Cultivadas
19.
J Am Vet Med Assoc ; 243(5): 696-702, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23971850

RESUMO

OBJECTIVE: To identify risk factors associated with survival in dogs with nontonsillar oral squamous cell carcinoma (OSCC) that were and were not treated with curative-intent surgery. DESIGN: Retrospective case series. ANIMALS: 31 dogs with OSCC. PROCEDURES: Medical records for dogs with OSCC that were not treated, or were treated with curative-intent surgery only between January 1990 and December 2010 were reviewed. For each dog, data regarding signalment, clinical stage, treatment, tumor recurrence, and survival time were obtained from the medical record, and archived biopsy specimens were evaluated to identify the histologic subtype of the tumor and extent of tumor-associated inflammation (TAI), perineural invasion (PNI), and lymphovascular invasion (LVI). RESULTS: Risk of death for the 21 dogs with OSCC that were surgically treated was decreased 91.4% (hazard ratio, 0.086; 95% confidence interval, 0.002 to 0.150), compared with that for the 10 dogs with OSCC that were not treated. The 1-year survival rate was 93.5% and 0% for dogs that were and were not surgically treated, respectively. Risk of death increased significantly with increasing TAI and increasing risk score (combination of TAI, PNI, and LVI). Tumor location, clinical stage, and histologic subtype were not associated with survival time. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the prognosis for dogs with OSCC was excellent following surgical excision of the tumor. Risk of death increased with increasing TAI, and combining TAI, PNI, and LVI into a single risk score may be a useful prognostic indicator for dogs with OSCC.


Assuntos
Carcinoma de Células Escamosas/veterinária , Doenças do Cão/mortalidade , Neoplasias Bucais/veterinária , Animais , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/cirurgia , Doenças do Cão/cirurgia , Cães , Feminino , Masculino , Neoplasias Bucais/mortalidade , Neoplasias Bucais/cirurgia , Estudos Retrospectivos , Fatores de Risco
20.
Oncoimmunology ; 2(1): e22647, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23482441

RESUMO

Cyclooxygenase-2 is frequently upregulated in epithelial tumors and contributes to poor outcomes in multiple malignancies. The COX-2 product prostaglandin E2 (PGE2) promotes tumor growth and metastasis by acting on a family of four G protein-coupled receptors (EP1-4). Using a novel small molecule EP4 antagonist (RQ-15986) and a syngeneic murine model of metastatic breast cancer, we determined the effect of EP4 blockade on innate immunity and tumor biology. Natural killer (NK)-cell functions are markedly depressed in mice bearing murine mammary tumor 66.1 or 410.4 cells owing to the actions of PGE2 on NK cell EP4 receptors. The EP4 agonist PGE1-OH inhibits NK functions in vitro, and this negative regulation is blocked by RQ-15986. Likewise, the treatment of tumor-bearing mice with RQ-15986 completely protected NK cells from the immunosuppressive effects of the tumor microenvironment in vivo. RQ-15986 also has direct effects on EP4 expressed by tumor cells, inhibiting the PGE2-mediated activation of adenylate cyclase and blocking PGE2-induced tumor cell migration. The pretreatment of tumor cells with a non-cytotoxic concentration of RQ-15986 inhibited lung colonization, a beneficial effect that was lost in mice depleted of NK cells. The oral administration of RQ-15986 inhibited the growth of tumor cells implanted into mammary glands and their spontaneous metastatic colonization to the lungs, resulting in improved survival. Our findings reveal that EP4 antagonism prevents tumor-mediated NK-cell immunosuppression and demonstrates the anti-metastatic activity of a novel EP4 antagonist. These observations support the investigation of EP4 antagonists in clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...