Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 39(3): 561-575, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28182550

RESUMO

Prior work has shown that multibiometric systems are vulnerable to presentation attacks, assuming that their matching score distribution is identical to that of genuine users, without fabricating any fake trait. We have recently shown that this assumption is not representative of current fingerprint and face presentation attacks, leading one to overestimate the vulnerability of multibiometric systems, and to design less effective fusion rules. In this paper, we overcome these limitations by proposing a statistical meta-model of face and fingerprint presentation attacks that characterizes a wider family of fake score distributions, including distributions of known and, potentially, unknown attacks. This allows us to perform a thorough security evaluation of multibiometric systems against presentation attacks, quantifying how their vulnerability may vary also under attacks that are different from those considered during design, through an uncertainty analysis. We empirically show that our approach can reliably predict the performance of multibiometric systems even under never-before-seen face and fingerprint presentation attacks, and that the secure fusion rules designed using our approach can exhibit an improved trade-off between the performance in the absence and in the presence of attack. We finally argue that our method can be extended to other biometrics besides faces and fingerprints.

2.
IEEE Trans Pattern Anal Mach Intell ; 30(7): 1293-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18550910

RESUMO

We apply an analytical framework for the analysis of linearly combined classifiers to ensembles generated by bagging. This provides an analytical model of bagging misclassification probability as a function of the ensemble size, which is a novel result in the literature. Experimental results on real data sets confirm the theoretical predictions. This allows us to derive a novel and theoretically grounded guideline for choosing bagging ensemble size. Furthermore, our results are consistent with explanations of bagging in terms of classifier instability and variance reduction, support the optimality of the simple average over the weighted average combining rule for ensembles generated by bagging, and apply to other randomization-based methods for constructing classifier ensembles. Although our results do not allow to compare bagging misclassification probability with the one of an individual classifier trained on the original training set, we discuss how the considered theoretical framework could be exploited to this aim.


Assuntos
Algoritmos , Inteligência Artificial , Análise por Conglomerados , Modelos Lineares , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador
3.
IEEE Trans Pattern Anal Mach Intell ; 27(6): 942-56, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15943425

RESUMO

In this paper, a theoretical and experimental analysis of linear combiners for multiple classifier systems is presented. Although linear combiners are the most frequently used combining rules, many important issues related to their operation for pattern classification tasks lack a theoretical basis. After a critical review of the framework developed in works by Tumer and Ghosh on which our analysis is based, we focus on the simplest and most widely used implementation of linear combiners, which consists of assigning a nonnegative weight to each individual classifier. Moreover, we consider the ideal performance of this combining rule, i.e., that achievable when the optimal values of the weights are used. We do not consider the problem of weights estimation, which has been addressed in the literature. Our theoretical analysis shows how the performance of linear combiners, in terms of misclassification probability, depends on the performance of individual classifiers, and on the correlation between their outputs. In particular, we evaluate the ideal performance improvement that can be achieved using the weighted average over the simple average combining rule and investigate in what way it depends on the individual classifiers. Experimental results on real data sets show that the behavior of linear combiners agrees with the predictions of our analytical model. Finally, we discuss the contribution to the state of the art and the practical relevance of our theoretical and experimental analysis of linear combiners for multiple classifier systems.


Assuntos
Algoritmos , Inteligência Artificial , Armazenamento e Recuperação da Informação/métodos , Modelos Lineares , Reconhecimento Automatizado de Padrão/métodos , Análise por Conglomerados , Simulação por Computador , Modelos Estatísticos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...