Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 452, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846527

RESUMO

Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Ligantes , Engenharia de Proteínas
2.
Biophys J ; 118(2): 386-395, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31870538

RESUMO

Earlier CO flow-flash experiments on the fully reduced Thermus thermophilus ba3 (Tt ba3) cytochrome oxidase revealed that O2 binding was slowed down by a factor of 10 in the presence of CO (Szundi et al., 2010, PNAS 107, 21010-21015). The goal of the current study is to explore whether the long apparent lifetime (∼50 ms) of the CuB+-CO complex generated upon photolysis of the CO-bound mixed-valence Tt ba3 (Koutsoupakis et al., 2019, Acc. Chem. Res. 52, 1380-1390) affects O2 and NO binding and the ability of CuB to act as an electron donor during O-O bond splitting. The CO recombination, NO binding, and the reaction of mixed-valence Tt ba3 with O2 were investigated by time-resolved optical absorption spectroscopy using the CO flow-flash approach and photolabile O2 and NO carriers. No electron backflow was detected after photolysis of the mixed-valence CO-bound Tt ba3. The rate of O2 and NO binding was two times slower than in the fully reduced enzyme in the presence of CO and 20 times slower than in the absence of CO. The purported long-lived CuB+-CO complex did not prevent O-O bond splitting and the resulting PM formation, which was significantly faster (5-10 times) than in the bovine heart enzyme. We propose that O2 binding to heme a3 in Tt ba3 causes CO to dissociate from CuB+ in a concerted manner through steric and/or electronic effects, thus allowing CuB+ to act as an electron donor in the mixed-valence enzyme. The significantly faster O2 binding and O-O bond cleavage in Tt ba3 compared to analogous steps in the aa3 oxidases could reflect evolutionary adaptation of the enzyme to the microaerobic conditions of the T. thermophilus HB8 species.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Thermus thermophilus/enzimologia , Transporte de Elétrons , Ligação Proteica
3.
Biophys J ; 113(9): 1934-1944, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117518

RESUMO

Rhodopsin is a G protein-coupled receptor found in the rod outer segments in the retina, which triggers a visual response under dim light conditions. Recently, a study of the late, microsecond-to-millisecond kinetics of photointermediates of the human and bovine rhodopsins in their native membranes revealed a complex, double-square mechanism of rhodopsin activation. In this kinetic scheme, the human rhodopsin exhibited more Schiff base deprotonation than bovine rhodopsin, which could arise from the ∼7% sequence difference between the two proteins, or from the difference between their membrane lipid environments. To differentiate between the effects of membrane and protein structure on the kinetics, the human and bovine rhodopsins were inserted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid nanodiscs and the kinetics of activation at 15°C and pH 8.7 was investigated by time-resolved absorption spectroscopy and global kinetic analysis. For both proteins, the kinetics in nanodiscs shows the characteristics observed in the native membranes, and is described by a multisquare model with Schiff base deprotonation at the lumirhodopsin I intermediate stage. The results indicate that the protein sequence controls the extent of Schiff base deprotonation and accumulation of intermediates, and thus plays the main role in the different activation kinetics observed between human and bovine rhodopsins. The membrane lipid does have a minor role by modulating the timing of the kinetics, with the nanodisc environment leading to an earlier Schiff base deprotonation.


Assuntos
Lipídeos de Membrana/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Cinética
4.
Biochemistry ; 56(1): 107-119, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28026953

RESUMO

Knowledge of the role of conserved residues in the ligand channel of heme-copper oxidases is critical for understanding how the protein scaffold modulates the function of these enzymes. In this study, we investigated the role of the conserved valine 236 in the ligand channel of ba3 cytochrome c oxidase from Thermus thermophilus by mutating the residue to a more polar (V236T), smaller (V236A), or larger (V236I, V236N, V236L, V236M, and V236F) residue. The crystal structures of the mutants were determined, and the effects of the mutations on the rates of CO, O2, and NO binding were investigated. O2 reduction and NO binding were unaffected in V236T, while the oxidation of heme b during O-O bond cleavage was not detected in V236A. The V236A results are attributed to a decrease in the rate of electron transfer between heme b and heme a3 during O-O bond cleavage in V236A, followed by faster re-reduction of heme b by CuA. This interpretation is supported by classical molecular dynamics simulations of diffusion of O2 to the active site in V236A that indicated a larger distance between the two hemes compared to that in the wild type and increased contact of heme a3 with water and weakened interactions with residues R444 and R445. As the size of the mutant side chain increased and protruded more into the ligand cavity, the rates of ligand binding decreased correspondingly. These results demonstrate the importance of V236 in facilitating access of ligands to the active site in T. thermophilus ba3.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Thermus thermophilus/enzimologia , Valina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/química , Heme/metabolismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Domínios Proteicos , Espectrofotometria , Thermus thermophilus/genética , Valina/química , Valina/genética
5.
Biochemistry ; 55(50): 7005-7013, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27935291

RESUMO

Rhodopsin is a G-protein-coupled receptor important for vertebrate vision under dim light conditions. Many studies of the activation mechanism of bovine rhodopsin have been conducted, but there have been relatively few investigations of the human protein. A recent study of the late photointermediates of bovine rhodopsin studies at 15 °C and pH 7.3, 8.0, and 8.7 revealed a rather complex activation mechanism involving two metarhodopsin I480 and metarhodopsin II intermediates. Human rhodopsin was studied under these same conditions using time-resolved optical absorption spectroscopy with measurements from 10 µs to 200 ms after photolysis. The results show that the two proteins follow the same photoactivation mechanism, although their kinetics differ significantly. The comparison of bovine and human rhodopsins shows that the initial Schiff base deprotonation equilibrium is more forward shifted in human rhodopsin, and more of the reaction flows through the metarhodopsin I380 intermediate in human rhodopsin than in the bovine protein.


Assuntos
Luz , Fotólise , Rodopsina/química , Bases de Schiff/química , Animais , Bovinos , Humanos , Cinética
6.
Biochemistry ; 55(36): 5095-105, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546000

RESUMO

The late intermediates involved in the activation mechanism of bovine rhodopsin are investigated by time-resolved optical absorption spectroscopy. Measurements from 10 µs to 200 ms after photolysis were carried out on membrane suspensions of bovine rhodopsin at a temperature of 15 °C and at pH of 7.3, 8.0, and 8.7. The time-resolved absorption spectra in the 330-650 nm range were analyzed by global exponential and kinetic scheme fitting methods. The results indicate an activation mechanism that is more complex than suggested previously. It involves interconnected branched pathways with two metarhodopsin I480 and two metarhodopsin II intermediates. The intermediates involved in this more complex mechanism need to be considered in spectroscopic studies that vary sample temperature and pH in order to enhance the presence of specific rhodopsin intermediates.


Assuntos
Álcalis/química , Temperatura Baixa , Rodopsina/metabolismo , Animais , Bovinos , Concentração de Íons de Hidrogênio , Análise Espectral/métodos
7.
Biochim Biophys Acta ; 1847(1): 109-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24998308

RESUMO

The route of O2to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O2binding may be compromised in CO flow-flash experiments. Time-resolved optical absorption studies show that the rate of O2and NO binding in the bovine enzyme (1 × 108M⁻¹s⁻¹) is unaffected by the presence of CO, which is consistent with the rapid dissociation (t½ = 1.5µs) of CO from CuB⁺. In contrast, in Thermus thermophilus (Tt) cytochrome ba3 the O2and NO binding to heme a3 slows by an order of magnitude in the presence of CO (from 1 × 109 to 1 × 108M⁻¹s⁻¹), but is still considerably faster (~10µs at 1atm O2) than the CO off-rate from CuB in the absence of O2(milliseconds). These results show that traditional CO flow-flash experiments do not give accurate results for the physiological binding of O2and NO in Tt ba3, namely, in the absence of CO. They also raise the question whether in CO flow-flash experiments on Tt ba3 the presence of CO on CuB⁺ impedes the binding of O2to CuB⁺ or, if O2does not bind to CuB⁺ prior to heme a3, whether the CuB⁺-CO complex sterically restricts access of O2to the heme. Both possibilities are discussed, and we argue that O2binds directly to heme a3 in Tt ba3, causing CO to dissociate from CuB⁺ in a concerted manner through steric and/or electronic effects. This would allow CuB⁺ to function as an electron donor during the fast (5µs) breaking of the OO bond. These results suggest that the binding of CO to CuB⁺ on the path to and from heme a3 may not be applicable to O2and NO in all heme-copper oxidases. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.


Assuntos
Heme/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Animais , Monóxido de Carbono/metabolismo , Domínio Catalítico , Bovinos , Cinética , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Thermus thermophilus/metabolismo
8.
Biochemistry ; 53(27): 4467-75, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24937405

RESUMO

Knowing how the protein environment modulates ligand pathways and redox centers in the respiratory heme-copper oxidases is fundamental for understanding the relationship between the structure and function of these enzymes. In this study, we investigated the reactions of O2 and NO with the fully reduced G232V mutant of ba3 cytochrome c oxidase from Thermus thermophilus (Tt ba3) in which a conserved glycine residue in the O2 channel of the enzyme was replaced with a bulkier valine residue. Previous studies of the homologous mutant of Rhodobacter sphaeroides aa3 cytochrome c oxidase suggested that the valine completely blocked the access of O2 to the active site [Salomonsson, L., et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 11617-11621]. Using photolabile O2 and NO carriers, we find by using time-resolved optical absorption spectroscopy that the rates of O2 and NO binding are not significantly affected in the Tt ba3 G232V mutant. Classical molecular dynamics simulations of diffusion of O2 to the active site in the wild-type enzyme and G232V mutant show that the insertion of the larger valine residue in place of the glycine appears to open up other O2 and NO exit/entrance pathways that allow these ligands unhindered access to the active site, thus compensating for the larger valine residue.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos b/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Glicina/química , Thermus thermophilus/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Grupo dos Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ligantes , Simulação de Dinâmica Molecular , Mutação , Óxido Nítrico/química , Oxirredução , Oxigênio/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Valina/química
9.
Biochemistry ; 52(4): 640-52, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23282175

RESUMO

Knowledge of the structure and dynamics of the ligand channel(s) in heme-copper oxidases is critical for understanding how the protein environment modulates the functions of these enzymes. Using photolabile NO and O(2) carriers, we recently found that NO and O(2) binding in Thermus thermophilus (Tt) ba(3) is ~10 times faster than in the bovine enzyme, indicating that inherent structural differences affect ligand access in these enzymes. Using X-ray crystallography, time-resolved optical absorption measurements, and theoretical calculations, we investigated ligand access in wild-type Tt ba(3) and the mutants, Y133W, T231F, and Y133W/T231F, in which tyrosine and threonine in the O(2) channel of Tt ba(3) are replaced by the corresponding bulkier tryptophan and phenylalanine, respectively, present in the aa(3) enzymes. NO binding in Y133W and Y133W/T231F was found to be 5 times slower than in wild-type ba(3) and the T231F mutant. The results show that the Tt ba(3) Y133W mutation and the bovine W126 residue physically impede NO access to the binuclear center. In the bovine enzyme, there is a hydrophobic "way station", which may further slow ligand access to the active site. Classical simulations of diffusion of Xe to the active sites in ba(3) and bovine aa(3) show conformational freedom of the bovine F238 and the F231 side chain of the Tt ba(3) Y133W/T231F mutant, with both residues rotating out of the ligand channel, resulting in no effect on ligand access in either enzyme.


Assuntos
Proteínas de Bactérias/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Miocárdio/enzimologia , Óxido Nítrico/química , Oxigênio/química , Thermus thermophilus/enzimologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Domínio Catalítico , Bovinos , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Xenônio/química
10.
Biochemistry ; 51(46): 9302-11, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23057757

RESUMO

Cytochrome c oxidase from Rhodobacter sphaeroides is frequently used to model the more complex mitochondrial enzyme. The O(2) reduction in both enzymes is generally described by a unidirectional mechanism involving the sequential formation of the ferrous-oxy complex (compound A), the P(R) state, the oxyferryl F form, and the oxidized state. In this study we investigated the reaction of dioxygen with the wild-type reduced R. sphaeroides cytochrome oxidase and the EQ(I-286) mutant using the CO flow-flash technique. Singular value decomposition and multiexponential fitting of the time-resolved optical absorption difference spectra showed that three apparent lifetimes, 18 µs, 53 µs, and 1.3 ms, are sufficient to fit the kinetics of the O(2) reaction of the wild-type enzyme. A comparison of the experimental intermediate spectra with the corresponding intermediate spectra of the bovine enzyme revealed that P(R) is not present in the reaction mechanism of the wild-type R. sphaeroides aa(3). Transient absorbance changes at 440 and 610 nm support this conclusion. For the EQ(I-286) mutant, in which a key glutamic residue in the D proton pathway is replaced by glutamine, two lifetimes, 16 and 108 µs, were observed. A spectral analysis of the intermediates shows that the O(2) reaction in the EQ(I-286) mutant terminates at the P(R) state, with 70% of heme a becoming oxidized. These results indicate significant differences in the kinetics of O(2) reduction between the bovine and wild-type R. sphaeroides aa(3) oxidases, which may arise from differences in the relative rates of internal electron and proton movements in the two enzymes.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mutação , Oxigênio/metabolismo , Rhodobacter sphaeroides/enzimologia , Espectrofotometria/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética
11.
Biochim Biophys Acta ; 1817(4): 672-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22201543

RESUMO

The reactions of molecular oxygen (O(2)) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba(3) and bovine heart aa(3) were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O(2) and NO complexes. The binding of O(2)/NO to reduced ba(3) in the absence of CO occurs with a second-order rate constant of 1×10(9)M(-1)s(-1). This rate is 10-times faster than for the mammalian enzyme, and which is attributed to structural differences in the ligand channels of the two enzymes. Moreover, the O(2)/NO binding in ba(3) is 10-times slower in the presence of the photodissociated CO while the rates are the same for the bovine enzyme. This indicates that the photodissociated CO directly or indirectly impedes O(2) and NO access to the active site in Tt ba(3), and that traditional CO flow-flash experiments do not accurately reflect the O(2) and NO binding kinetics in ba(3). We suggest that in ba(3) the binding of O(2) (NO) to heme a(3)(2+) causes rapid dissociation of CO from Cu(B)(+) through steric or electronic effects or, alternatively, that the photodissociated CO does not bind to Cu(B)(+). These findings indicate that structural differences between Tt ba(3) and the bovine aa(3) enzyme are tightly linked to mechanistic differences in the functions of these enzymes. This article is part of a Special Issue entitled: Respiratory Oxidases.


Assuntos
Grupo dos Citocromos b/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Thermus thermophilus/enzimologia , Animais , Monóxido de Carbono/metabolismo , Bovinos , Cinética , Oxirredução/efeitos da radiação , Ligação Proteica/efeitos da radiação , Espectrofotometria/métodos , Thermus thermophilus/metabolismo , Thermus thermophilus/efeitos da radiação
12.
Proc Natl Acad Sci U S A ; 107(49): 21010-5, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21097703

RESUMO

Kinetic studies of heme-copper terminal oxidases using the CO flow-flash method are potentially compromised by the fate of the photodissociated CO. In this time-resolved optical absorption study, we compared the kinetics of dioxygen reduction by ba(3) cytochrome c oxidase from Thermus thermophilus in the absence and presence of CO using a photolabile O(2)-carrier. A novel double-laser excitation is introduced in which dioxygen is generated by photolyzing the O(2)-carrier with a 355 nm laser pulse and the fully reduced CO-bound ba(3) simultaneously with a second 532-nm laser pulse. A kinetic analysis reveals a sequential mechanism in which O(2) binding to heme a(3) at 90 µM O(2) occurs with lifetimes of 9.3 and 110 µs in the absence and presence of CO, respectively, followed by a faster cleavage of the dioxygen bond (4.8 µs), which generates the P intermediate with the concomitant oxidation of heme b. The second-order rate constant of 1 × 10(9) M(-1) s(-1) for O(2) binding to ba(3) in the absence of CO is 10 times greater than observed in the presence of CO as well as for the bovine heart enzyme. The O(2) bond cleavage in ba(3) of 4.8 µs is also approximately 10 times faster than in the bovine enzyme. These results suggest important structural differences between the accessibility of O(2) to the active site in ba(3) and the bovine enzyme, and they demonstrate that the photodissociated CO impedes access of dioxygen to the heme a(3) site in ba(3), making the CO flow-flash method inapplicable.


Assuntos
Monóxido de Carbono/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Thermus thermophilus/metabolismo , Animais , Bovinos , Grupo dos Citocromos b/metabolismo , Cinética , Oxirredução , Ligação Proteica/efeitos dos fármacos , Análise Espectral/métodos , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...