Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15850-15859, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805091

RESUMO

Light-driven strategies that enable the chemoselective activation of a specific bond in multifunctional systems are comparatively underexplored in comparison to transition-metal-based technologies, yet desirable when considering the controlled exploration of chemical space. With the current drive to discover next-generation therapeutics, reaction design that enables the strategic incorporation of an sp3 carbon center, containing multiple synthetic handles for the subsequent exploration of chemical space would be highly enabling. Here, we describe the photoactivation of ambiphilic C1 units to generate α-bimetalloid radicals using only a Lewis base and light source to directly activate the C-I bond. Interception of these transient radicals with various SOMOphiles enables the rapid synthesis of organic scaffolds containing synthetic handles (B, Si, and Ge) for subsequent orthogonal activation. In-depth theoretical and mechanistic studies reveal the prominent role of 2,6-lutidine in forming a photoactive charge transfer complex and in stabilizing in situ generated iodine radicals, as well as the influential role of the boron p-orbital in the activation/weakening of the C-I bond. This simple and efficient methodology enabled expedient access to functionalized 3D frameworks that can be further derivatized using available technologies for C-B and C-Si bond activation.

2.
ACS Appl Mater Interfaces ; 16(6): 7211-7218, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301237

RESUMO

Molecular solar thermal energy storage (MOST) systems are rapidly becoming a feasible alternative to energy storage and net-zero carbon emission heating. MOST systems involve a single photoisomerization pair that incorporates light absorption, storage, and heat release processes in one recurring cycle. Despite significant recent advancements in the field, the catalytic back-reaction from MOST systems remains relatively unexplored. A wide range of applications is possible, contingent on the energy densities of the specific photoisomers. Here, we report platinum-, copper-, and nickel-based heterogeneous catalysts screened in batch conditions for the back-conversion reaction on the cyano-3-(4-methoxyphenyl)-norbornadiene/quadricyclane pair. Catalyst reactivities are investigated using structural characterization, imaging techniques, and spectroscopic analysis. Finally, the thermal stability is also explored for our best-performing catalysts.

3.
Chemistry ; 30(1): e202303230, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947164

RESUMO

Solar energy utilization has gained considerable attention due to its abundance and renewability. However, its intermittent nature presents a challenge in harnessing its full potential. The development of energy storing compounds capable of capturing and releasing solar energy on demand has emerged as a potential solution. These compounds undergo a photochemical transformation that results in a high-energy metastable photoisomer, which stores solar energy in the form of chemical bonds and can release it as heat when required. Such systems are referred to as MOlecular Solar Thermal (MOST)-systems. Although the photoisomerization of MOST systems has been vastly studied, its back-conversion, particularly using heterogeneous catalysts, is still underexplored and the development of effective catalysts for releasing stored energy is crucial. Herein we compare the performance of 27 heterogeneous catalysts releasing the stored energy in an efficient Norbornadiene/Quadricyclane (NBD/QC) MOST system. We report the first benchmarking of heterogeneous catalysts for a MOST system using a robust comparison method of the catalysts' activity and monitoring the conversion using UV-Visible (UV-Vis) spectroscopy. Our findings provide insights into the development of effective catalysts for MOST systems. We anticipate that our assay will reveal the necessity of further investigation on heterogeneous catalysis.

4.
Angew Chem Int Ed Engl ; 62(45): e202310639, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676106

RESUMO

Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C-H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.

5.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298098

RESUMO

Photoredox catalysis has emerged as an alternative to classical cross-coupling reactions, promoting new reactivities. Recently, the use of widely abundant alcohols and aryl bromides as coupling reagents was demonstrated to promote efficient coupling through the Ir/Ni dual photoredox catalytic cycle. However, the mechanism underlying this transformation is still unexplored, and here we report a comprehensive computational study of the catalytic cycle. We have shown that nickel catalysts can promote this reactivity very efficiently through DFT calculations. Two different mechanistic scenarios were explored, suggesting that two catalytic cycles operate simultaneously depending on the concentration of the alkyl radical.


Assuntos
Brometos , Níquel , Oxirredução , Catálise , Álcoois
6.
Org Lett ; 25(18): 3216-3221, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130365

RESUMO

Herein, we report a highly modular strategy to access spirocyclic scaffolds from abundant starting materials, i.e., cyclic ketones and α-amino or oxamic acids. The sequence proceeds through a straightforward Knoevenagel condensation, followed by a domino Giese-type reaction/base-mediated cyclization process, to deliver a broad scope of polar spirocyclic scaffolds in good to excellent yields. The products can be readily diversified, thus increasing the versatility of our method to gain rapid access to libraries of potential druglike molecules.

7.
Chemistry ; 29(40): e202301406, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37140140

RESUMO

Formation of carbon-carbon bonds through cross-coupling reactions using readily available substrates, like alcohols, is crucial for modern organic chemistry. Recently, direct alkyl alcohol functionalization has been achieved by the use of N-Heterocyclic Carbene (NHC) salts via in situ formation of an alcohol-NHC adduct and its activation by a photoredox catalyst to generate carbon-centered alkyl radicals. Experimentally, only electron deficient NHC activators work but the reasons of this behavior remain underexplored. Herein, a DFT computational study of the mechanism of alcohol activation using up to seven NHC salts is performed to shed light into the influence of their electronic properties in the alkyl radical formation. This study demonstrates that four reaction steps are involved in the transformation and characterizes how the electronic properties of the NHC salt affect each step. A fine balance of the NHC electron-richness is proved to be determinant for this transformation.

8.
Angew Chem Int Ed Engl ; 61(43): e202207647, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36047716

RESUMO

Although considerable advances have been made in developing chemoselective transformations of ubiquitous carboxylic acid groups, many challenges still exist. For instance, their selective reduction is problematic if both more nucleophilic and more electrophilic groups are present in the starting material. Here, we address this problem with a simple and mild protocol using bench-stable reagents at ambient temperatures. This platform is able to tolerate a diverse range of functionality, leaving ketones, esters, nitro-groups, olefins, nitriles and amides untouched. A combination of experimental and computational mechanistic experiments demonstrate that this reaction proceeds via hidden borane catalysis with small quantities of in situ generated BH3 playing a key role in the exquisite selectivity that is observed.

9.
Nat Commun ; 13(1): 4453, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915119

RESUMO

Site- and enantioselective incorporation of deuterium into organic compounds is of broad interest in organic synthesis, especially within the pharmaceutical industry. While catalytic approaches relying on two-electron reaction manifolds have allowed for stereoselective delivery of a formal deuteride (D-) or deuteron (D+) at benzylic positions, complementary strategies that make use of one-electron deuterium atom transfer and target non-benzylic positions remain elusive. Here we report a photochemical approach for asymmetric radical deuteration by utilizing readily available peptide- or sugar-derived thiols as the catalyst and inexpensive deuterium oxide as the deuterium source. This metal-free platform enables four types of deuterofunctionalization reactions of exocyclic olefins and allows deuteration at non-benzylic positions with high levels of enantioselectivity and deuterium incorporation. Computational studies reveal that attractive non-covalent interactions are responsible for stereocontrol. We anticipate that our findings will open up new avenues for asymmetric deuteration.


Assuntos
Alcenos , Luz , Alcenos/química , Catálise , Deutério/química
10.
ACS Omega ; 7(26): 22811-22817, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811875

RESUMO

The aza-Piancatelli reaction has been widely used to synthesize donor-acceptor Stenhouse adducts (DASAs), a new class of molecular photoswitches with unique properties. However, the substitution pattern of furan cores has been limited to position 3, as 3,4-disubstituted furans remain unreactive. Herein, we explore the aza-Piancatelli reaction mechanism using density functional theory (DFT) calculations to understand the influence of the different substituents on the reactivity. We found that all the reaction pathways are kinetically accessible, but the driving force of the reaction is lost in disubstituted furans due to the loss of conjugation in the DASA products. Finally, a simple model is proposed to guide the design of synthetic routes using this reaction.

11.
Organometallics ; 41(9): 1099-1105, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35572769

RESUMO

We have recently developed a method for the synthesis of pyrrolidines and piperidines via intramolecular C-H amination of N-fluoride amides using [Tp x CuL] complexes as precatalysts [Tp x = tris(pyrazolyl)borate ligand and L = THF or CH3CN]. Herein, we report mechanistic studies on this transformation, which includes the isolation and structural characterization of a fluorinated copper(II) complex, [(TpiPr2OH)CuF] [TpiPr = hydrotris(3,5-diisopropylpyrazolyl)borate], pertinent to the mechanistic pathway. The effects of the nature of the Tp x ligand in the copper catalyst as well as of the halide in the N-X amides employed as reactants have been investigated both from experimental and computational perspectives.

12.
Science ; 376(6594): 749-753, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549424

RESUMO

Substituted six-membered cyclic hydrocarbons are common constituents of biologically active compounds. Although methods for the synthesis of thermodynamically favored, disubstituted cyclohexanes are well established, a reliable and modular protocol for the synthesis of their stereoisomers is still elusive. Herein, we report a general strategy for the modular synthesis of disubstituted cyclohexanes with excellent kinetic stereocontrol from readily accessible substituted methylenecyclohexanes by the implementation of chain-walking catalysis. Mechanistically, the initial introduction of a sterically demanding boron ester group adjacent to the cyclohexane is key to guiding the stereochemical outcome. The synthetic potential of this methodology has been highlighted in late-stage modification of complex bioactive molecules and in comparison with current cross-coupling techniques.

13.
Angew Chem Int Ed Engl ; 61(1): e202109801, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34758166

RESUMO

We developed simple and efficient protocols for palladium-catalyzed regioselective α- and ß-arylations of structurally diverse vinyl ethers. Both catalytic methods proceed under relatively mild reactions conditions applying to a broad substrate range including more complex compounds providing arylated glucal or isochromene. Lacking the common requirement of a large reagent excess, the transformations are highly economic and limiting the waste production. Results from computational studies (DFT) provided insight into the key factors determining the pronounced regioselectivities of the investigated reactions.

14.
Science ; 374(6571): 1134-1140, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34822285

RESUMO

Although machine learning bears enormous potential to accelerate developments in homogeneous catalysis, the frequent need for extensive experimental data can be a bottleneck for implementation. Here, we report an unsupervised machine learning workflow that uses only five experimental data points. It makes use of generalized parameter databases that are complemented with problem-specific in silico data acquisition and clustering. We showcase the power of this strategy for the challenging problem of speciation of palladium (Pd) catalysts, for which a mechanistic rationale is currently lacking. From a total space of 348 ligands, the algorithm predicted, and we experimentally verified, a number of phosphine ligands (including previously never synthesized ones) that give dinuclear Pd(I) complexes over the more common Pd(0) and Pd(II) species.

15.
J Am Chem Soc ; 143(29): 11251-11261, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269582

RESUMO

Radical hydroalkylation of olefins enabled by hydrogen atom transfer (HAT) catalysis represents a straightforward means to access C(sp3)-rich molecules from abundant feedstock chemicals without the need for prefunctionalization. While Giese-type hydroalkylation of activated olefins initiated by HAT of hydridic carbon-hydrogen bonds is well-precedented, hydroalkylation of unactivated olefins in a similar fashion remains elusive, primarily owing to a lack of general methods to overcome the inherent polarity-mismatch in this scenario. Here, we report the use of visible-light-driven dual HAT catalysis to achieve this goal, where catalytic amounts of an amine-borane and an in situ generated thiol were utilized as the hydrogen atom abstractor and donor, respectively. The reaction is completely atom-economical and exhibits a broad scope. Experimental and computational studies support the proposed mechanism and suggest that hydrogen-bonding between the amine-borane and substrates is beneficial to improving the reaction efficiency.

16.
Org Lett ; 23(14): 5378-5382, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34196560

RESUMO

We report a dual-catalytic platform for the cross-dehydrogenative-coupling between (benzo-)thiazoles and amines which combines low loadings of an iridium photoredox catalyst and a cobaloxime catalyst under blue light irradiation. This transformation occurs without stoichiometric oxidants, giving products in moderate to excellent yields. DFT calculations support the key role of Co(II) for rearomatization of the radical-addition intermediate to generate the product.

17.
Angew Chem Int Ed Engl ; 60(34): 18639-18644, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34015172

RESUMO

Water oxidation to dioxygen is one of the key reactions that need to be mastered for the design of practical devices based on water splitting with sunlight. In this context, water oxidation catalysts based on first-row transition metal complexes are highly desirable due to their low cost and their synthetic versatility and tunability through rational ligand design. A new family of dianionic bpy-amidate ligands of general formula H2 LNn- (LN is [2,2'-bipyridine]-6,6'-dicarboxamide) substituted with phenyl or naphthyl redox non-innocent moieties is described. A detailed electrochemical analysis of [(L4)Cu]2- (L4=4,4'-(([2,2'-bipyridine]-6,6'-dicarbonyl)bis(azanediyl))dibenzenesulfonate) at pH 11.6 shows the presence of a large electrocatalytic wave for water oxidation catalysis at an η=830 mV. Combined experimental and computational evidence, support an all ligand-based process with redox events taking place at the aryl-amide groups and at the hydroxido ligands.

18.
Angew Chem Int Ed Engl ; 59(47): 21176-21182, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32767728

RESUMO

Selectivity between 1,2 and 1,4 addition of a nucleophile to an α,ß-unsaturated carbonyl compound has classically been modified by the addition of stoichiometric additives to the substrate or reagent to increase their "hard" or "soft" character. Here, we demonstrate a conceptually distinct approach that instead relies on controlling the coordination sphere of a catalyst with visible light. In this way, we bias the reaction down two divergent pathways, giving contrasting products in the catalytic hydroboration of α,ß-unsaturated ketones. This includes direct access to previously elusive cyclic enolborates, via 1,4-selective hydroboration, providing a straightforward and stereoselective route to rare syn-aldol products in one-pot. DFT calculations and mechanistic experiments confirm two different mechanisms are operative, underpinning this unusual photocontrolled selectivity switch.


Assuntos
Boratos/síntese química , Cobalto/química , Cetonas/química , Luz , Boratos/química , Catálise , Teoria da Densidade Funcional , Estrutura Molecular , Processos Fotoquímicos
19.
ChemSusChem ; 13(16): 4140-4150, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32663375

RESUMO

The design of a photopolymer around a renewable furan-derived chromophore is presented herein. An optimised semi-continuous oxidation method using MnO2 affords 2,5-diformylfuran from 5-(hydroxymethyl)furfural in gram quantities, allowing the subsequent synthesis of 3,3'-(2,5-furandiyl)bisacrylic acid in good yield and excellent stereoselectivity. The photoactivity of the diester of this monomer is confirmed by reaction under UV irradiation, and the proposed [2+2] cycloaddition mechanism supported further by TD-DFT calculations. Oligoesters of the photoreactive furan diacid with various aliphatic diols are prepared via chemo- and enzyme-catalysed polycondensation. The latter enzyme-catalysed (Candida antarctica lipase B) method results in the highest Mn (3.6 kDa), suggesting milder conditions employed with this protocol minimised unwanted side reactions, including untimely [2+2] cycloadditions, whilst preserving the monomer's photoactivity and stereoisomerism. The photoreactive polyester is solvent cast into a film where subsequent initiator-free UV curing leads to an impressive increase in the material stiffness, with work-hardening characteristics observed during tensile strength testing.

20.
Angew Chem Int Ed Engl ; 59(36): 15543-15548, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32392397

RESUMO

Selective C sp 2 -C sp 2 couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0 /PdII catalysis) in the presence of the valuable functionalities C-BPin, C-SiMe3 , C-I, C-Br, C-Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C-Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar-N2 + , which were specialized in Ar-N2 + scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar-N2 + salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar-N2 + , which requires an alternative photo-redox approach to enable productive couplings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...