Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479648

RESUMO

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitose , Animais , Humanos , Masculino , Camundongos , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Ligação Proteica , Receptores Depuradores Classe B/metabolismo
2.
Hum Vaccin Immunother ; 20(1): 2304393, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38497413

RESUMO

Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Neuraminidase/genética , Vacinas Sintéticas/genética , RNA
3.
Traffic ; 19(1): 5-18, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985008

RESUMO

Vesicle-mediated transcellular transport or simply "transcytosis" is a cellular process used to shuttle macromolecules such as lipoproteins, antibodies, and albumin from one surface of a polarized cell to the other. This mechanism is in contrast to the transit of small molecules such as anions, cations and amino acids that occur via uptake, diffusion through the cytosol and release and is also distinct from paracellular leak between cells. Importantly, transcytosis has evolved as a process to selectively move macromolecules between 2 neighboring yet unique microenvironments within a multicellular organism. Examples include the movement of lipoproteins out of the circulatory system and into tissues and the delivery of immunoglobulins to mucosal surfaces. Regardless of whether the transport is conducted by endothelial or epithelial cells, the process often involves receptor-mediated uptake of a ligand into an endocytic vesicle, regulated transit of the carrier through the cytoplasm and release of the cargo via an exocytic event. While transcytosis has been examined in detail in epithelial cells, for both historical and technical reasons, the process is less understood in endothelial cells. Here, we spotlight aspects of epithelial transcytosis including recent findings and review the comparative dearth of knowledge regarding the process in endothelial cells highlighting the opportunity for further study.


Assuntos
Células Endoteliais/metabolismo , Transcitose , Vesículas Transportadoras/metabolismo , Animais , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos
4.
Cardiovasc Res ; 108(2): 268-77, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26334034

RESUMO

AIMS: Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcytosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved. METHODS AND RESULTS: Murine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of DiI-LDL in real time using total internal reflection fluorescence microscopy. DiI-LDL transcytosis was inhibited by excess unlabelled LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger receptor SR-BI and overexpression of SR-BI increased LDL transcytosis; knockdown by siRNA significantly reduced it. Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-BI-deficient mice were perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates. CONCLUSION: We developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of atherosclerosis.


Assuntos
LDL-Colesterol/metabolismo , Endotélio Vascular/metabolismo , Técnicas In Vitro/métodos , Receptores Depuradores Classe B/fisiologia , Transcitose , Animais , Aorta/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
5.
Int Rev Cell Mol Biol ; 310: 289-339, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24725429

RESUMO

Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Septinas/metabolismo , Animais , Apoptose , Ciclo Celular , Divisão Celular , Membrana Celular/metabolismo , Movimento Celular , Citocinas/metabolismo , Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Saccharomycetales/metabolismo
6.
J Biol Chem ; 288(42): 30075-30086, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23990466

RESUMO

Precise cell division is essential for multicellular development, and defects in this process have been linked to cancer. Septins are a family of proteins that are required for mammalian cell division, but their function and mode of regulation during this process are poorly understood. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) phosphorylates septin 9 (SEPT9) upon mitotic entry, and this phosphorylation controls association with the proline isomerase, Pin1. Both SEPT9 and Pin1 are critical for mediating the final separation of daughter cells. Expression of mutant SEPT9 that is defective in Pin1 binding was unable to rescue cytokinesis defects caused by SEPT9 depletion but rather induced dominant-negative defects in cytokinesis. However, unlike SEPT9 depletion, Pin1 was not required for the accumulation of the exocyst complex at the midbody. These results suggest that SEPT9 plays multiple roles in abscission, one of which is regulated by the action of Cdk1 and Pin1.


Assuntos
Proteína Quinase CDC2/metabolismo , Citocinese/fisiologia , Peptidilprolil Isomerase/metabolismo , Septinas/metabolismo , Proteína Quinase CDC2/genética , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Mutação , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação/fisiologia , Ligação Proteica , Septinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...