Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 17(1): 184, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604469

RESUMO

BACKGROUND: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. RESULTS: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. CONCLUSIONS: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.


Assuntos
Biologia Computacional , Proteínas/química , Software , Relação Estrutura-Atividade , Algoritmos , Bases de Dados de Proteínas , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Proteínas/genética
2.
J Biomed Semantics ; 7: 52, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27613112

RESUMO

BACKGROUND: Gene Ontology (GO) terms represent the standard for annotation and representation of molecular functions, biological processes and cellular compartments, but a large gap exists between the way concepts are represented in the ontology and how they are expressed in natural language text. The construction of highly specific GO terms is formulaic, consisting of parts and pieces from more simple terms. RESULTS: We present two different types of manually generated rules to help capture the variation of how GO terms can appear in natural language text. The first set of rules takes into account the compositional nature of GO and recursively decomposes the terms into their smallest constituent parts. The second set of rules generates derivational variations of these smaller terms and compositionally combines all generated variants to form the original term. By applying both types of rules, new synonyms are generated for two-thirds of all GO terms and an increase in F-measure performance for recognition of GO on the CRAFT corpus from 0.498 to 0.636 is observed. Additionally, we evaluated the combination of both types of rules over one million full text documents from Elsevier; manual validation and error analysis show we are able to recognize GO concepts with reasonable accuracy (88 %) based on random sampling of annotations. CONCLUSIONS: In this work we present a set of simple synonym generation rules that utilize the highly compositional and formulaic nature of the Gene Ontology concepts. We illustrate how the generated synonyms aid in improving recognition of GO concepts on two different biomedical corpora. We discuss other applications of our rules for GO ontology quality assurance, explore the issue of overgeneration, and provide examples of how similar methodologies could be applied to other biomedical terminologies. Additionally, we provide all generated synonyms for use by the text-mining community.


Assuntos
Mineração de Dados/métodos , Ontologia Genética , Semântica , Processamento de Linguagem Natural , Reconhecimento Automatizado de Padrão
3.
Gigascience ; 4: 41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380075

RESUMO

BACKGROUND: The recently held Critical Assessment of Function Annotation challenge (CAFA2) required its participants to submit predictions for a large number of target proteins regardless of whether they have previous annotations or not. This is in contrast to the original CAFA challenge in which participants were asked to submit predictions for proteins with no existing annotations. The CAFA2 task is more realistic, in that it more closely mimics the accumulation of annotations over time. In this study we compare these tasks in terms of their difficulty, and determine whether cross-validation provides a good estimate of performance. RESULTS: The CAFA2 task is a combination of two subtasks: making predictions on annotated proteins and making predictions on previously unannotated proteins. In this study we analyze the performance of several function prediction methods in these two scenarios. Our results show that several methods (structured support vector machine, binary support vector machines and guilt-by-association methods) do not usually achieve the same level of accuracy on these two tasks as that achieved by cross-validation, and that predicting novel annotations for previously annotated proteins is a harder problem than predicting annotations for uncharacterized proteins. We also find that different methods have different performance characteristics in these tasks, and that cross-validation is not adequate at estimating performance and ranking methods. CONCLUSIONS: These results have implications for the design of computational experiments in the area of automated function prediction and can provide useful insight for the understanding and design of future CAFA competitions.


Assuntos
Proteínas/fisiologia , Bases de Dados de Proteínas
4.
J Biomed Semantics ; 6: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005564

RESUMO

Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.

5.
Pac Symp Biocomput ; : 328-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24297559

RESUMO

Identifying genetic variants that affect drug response or play a role in disease is an important task for clinicians and researchers. Before individual variants can be explored efficiently for effect on drug response or disease relationships, specific candidate genes must be identified. While many methods rank candidate genes through the use of sequence features and network topology, only a few exploit the information contained in the biomedical literature. In this work, we train and test a classifier on known pharmacogenes from PharmGKB and present a classifier that predicts pharmacogenes on a genome-wide scale using only Gene Ontology annotations and simple features mined from the biomedical literature. Performance of F=0.86, AUC=0.860 is achieved. The top 10 predicted genes are analyzed. Additionally, a set of enriched pharmacogenic Gene Ontology concepts is produced.


Assuntos
Farmacogenética/estatística & dados numéricos , Inteligência Artificial , Biologia Computacional , Mineração de Dados/estatística & dados numéricos , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Ontologia Genética/estatística & dados numéricos , Variação Genética , Humanos , Bases de Conhecimento , Processamento de Linguagem Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...