Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Appl Microbiol ; 127(4): 1224-1235, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31330088

RESUMO

AIMS: The goal of this study was to examine, for the first time, the virulence and pathogenicity of aerosolized Burkholderia pseudomallei, strain NCTC 13392, in BALB/c mice in order to develop an animal model for testing novel medical countermeasures (MCMs) for the treatment of human acute and subacute (a disease state between acute and chronic) melioidosis. METHODS AND RESULTS: BALB/c mice were exposed to varying doses of aerosolized bacteria. Acute disease was seen in animals exposed to a very-high dose (≥103  CFU per animal) and death occurred 3-4 days postchallenge (pc). Bacteria were detected in the lungs, liver, kidney and spleen. In contrast, animals exposed to a low dose (<10 CFU per animal) survived to the end of the study (day 30 pc) but developed weight loss, a bacterial tissue burden and increasing clinical signs of infection from day 20 pc onwards, mimicking a subacute form of the disease. Pathological changes in the tissues mirrored these findings. CONCLUSIONS: This proof of concept study has shown that B. pseudomallei strain NCTC 13392 is virulent and pathogenic in BALB/c mice, when delivered by aerosol. By varying the doses of aerosolized bacteria it was possible to mimic characteristics of both human acute and subacute melioidosis, at the same time, within the same study. SIGNIFICANCE AND IMPACT OF THE STUDY: Burkholderia pseudomallei, the aetiological agent of melioidosis, causes a serious and often fatal disease in humans and animals. Novel MCMs are urgently needed for both public health and biodefense purposes. The present model provides a useful tool for the assessment and evaluation of new MCMs (e.g. therapeutics and vaccines) and offers the potential for testing new treatments for both subacute to chronic and acute melioidosis prior to human clinical trials.


Assuntos
Burkholderia pseudomallei , Modelos Animais de Doenças , Melioidose , Aerossóis , Animais , Camundongos , Camundongos Endogâmicos BALB C
3.
Clin Exp Immunol ; 196(3): 287-304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985006

RESUMO

Plague caused by the Gram-negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non-human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V-OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV-based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo-tolerance; needle-free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell-mediated immune responses; and targeting of primary sites of plague infection.


Assuntos
Antígenos de Bactérias/metabolismo , Membrana Externa Bacteriana/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Vacina contra a Peste/imunologia , Peste/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vesículas Transportadoras/imunologia , Yersinia pestis/fisiologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bioengenharia , Morte Celular , Células Cultivadas , Microbioma Gastrointestinal/genética , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Macaca , Peste/prevenção & controle , Vacina contra a Peste/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Vesículas Transportadoras/metabolismo
4.
J Virol ; 89(8): 4335-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653439

RESUMO

UNLABELLED: To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. IMPORTANCE: Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the "Animal Rule," in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis , Monkeypox virus , Mpox/imunologia , Mpox/fisiopatologia , Aerossóis/administração & dosagem , Animais , Antígenos Virais/metabolismo , Citocinas/sangue , DNA Viral/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Pulmão/virologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Carga Viral , Ensaio de Placa Viral
5.
J Immunol Res ; 2014: 807564, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097863

RESUMO

New vaccines against biodefense-related and emerging pathogens are being prepared for licensure using the US Federal Drug Administration's "Animal Rule." This allows licensure of drugs and vaccines using protection data generated in animal models. A new acellular plague vaccine composed of two separate recombinant proteins (rF1 and rV) has been developed and assessed for immunogenicity in humans. Using serum obtained from human volunteers immunised with various doses of this vaccine and from immunised cynomolgus macaques, we assessed the pharmacokinetic properties of human and cynomolgus macaque IgG in BALB/c and the NIH Swiss derived Hsd:NIHS mice, respectively. Using human and cynomolgus macaque serum with known ELISA antibody titres against both vaccine components, we have shown that passive immunisation of human and nonhuman primate serum provides a reproducible delay in median time to death in mice exposed to a lethal aerosol of plague. In addition, we have shown that Hsd:NIHS mice are a better model for humoral passive transfer studies than BALB/c mice.


Assuntos
Soros Imunes/imunologia , Imunização Passiva , Macaca fascicularis/imunologia , Peste/imunologia , Peste/prevenção & controle , Especificidade da Espécie , Yersinia pestis/imunologia , Animais , Anticorpos Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Soros Imunes/administração & dosagem , Camundongos , Peste/mortalidade , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/imunologia , Virulência , Yersinia pestis/patogenicidade
6.
Infect Immun ; 72(1): 338-44, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14688113

RESUMO

Successful vaccines against serogroup A and C meningococcal strains have been developed, but current serogroup B vaccines provide protection against only a limited range of strains. The ideal meningococcal vaccine would provide cross-reactive immunity against the variety of strains that may be encountered in any community, but it is unclear whether the meningococcus possesses immune targets that have the necessary level of cross-reactivity. We have generated a phoP mutant of the meningococcus by allele exchange. PhoP is a component of a two-component regulatory system which in other bacteria is an important regulator of virulence gene expression. Inactivation of the PhoP-PhoQ system in Salmonella leads to avirulence, and phoP mutants have been shown to confer protection against virulent challenge. These mutants have been examined as potential live attenuated vaccines. We here show that a phoP mutant of the meningococcus is avirulent in a mouse model of infection. Moreover, infection of mice with the phoP mutant stimulated a bactericidal immune response that not only killed the infecting strain but also showed cross-reactive bactericidal activity against a range of strains with different serogroup, serotype, and serosubtyping antigens. Sera from the mutant-infected mice contained immunoglobulin G that bound to the surface of a range of meningococcal strains and mediated opsonophagocytosis of meningococci by human phagocytic cells. The meningococcal phoP mutant is thus a candidate live, attenuated vaccine strain and may also be used to identify cross-reactive protective antigens in the meningococcus.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Infecções Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Animais , Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Linhagem Celular , Reações Cruzadas , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções Meningocócicas/microbiologia , Camundongos , Mutação , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Proteínas Opsonizantes , Fagocitose , Polimixina B/farmacologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...