Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(9): 3189-94, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17360627

RESUMO

During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells.


Assuntos
Cromossomos Humanos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Mitose/fisiologia , Western Blotting , Diferenciação Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Epigênese Genética/genética , Perfilação da Expressão Gênica , Humanos , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Interferência de RNA
2.
Nature ; 445(7126): 442-6, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17251981

RESUMO

Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromatin, co-localize with the RNA Pol I transcription factor UBF1, and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by Runx2 deficiency that results from gene ablation or RNA interference, whereas induction of Runx2 specifically and directly represses rDNA promoter activity. Runx2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1, co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus Runx2 is a critical mechanistic link between cell fate, proliferation and growth control. Our results suggest that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate.


Assuntos
Linhagem da Célula , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Genes de RNAr/genética , Mitose , Transcrição Gênica , Animais , Sequência de Bases , Cromátides/genética , Cromátides/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , DNA Ribossômico/genética , Humanos , Interfase , Metáfase , Camundongos , Mitose/genética , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
3.
J Cell Sci ; 117(Pt 21): 4889-96, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15367579

RESUMO

Regulatory machinery for replication and gene expression is punctately organized in supramolecular complexes that are compartmentalized in nuclear microenvironments. Quantitative approaches are required to understand the assembly of regulatory machinery within the context of nuclear architecture and to provide a mechanistic link with biological control. We have developed 'intranuclear informatics' to quantify functionally relevant parameters of spatially organized nuclear domains. Using this informatics strategy we have characterized post-mitotic reestablishment of focal subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells. By analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we establish molecular determinants for the spatial order of Runx domains. Our novel approach provides evidence that architectural organization of Runx factors may be fundamental to their tissue-specific regulatory function.


Assuntos
Bioquímica/métodos , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Subunidades alfa de Fatores de Ligação ao Core , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Mitose , Mutação , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Ratos , Transcrição Gênica
4.
J Biol Chem ; 279(38): 40062-75, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15247266

RESUMO

Insulin stimulates glucose transport in muscle and adipose tissues by recruiting intracellular membrane vesicles containing the glucose transporter GLUT4 to the plasma membrane. The mechanisms involved in the biogenesis of these vesicles and their translocation to the cell surface are poorly understood. Here, we report that an Eps15 homology (EH) domain-containing protein, EHD1, controls the normal perinuclear localization of GLUT4-containing membranes and is required for insulin-stimulated recycling of these membranes in cultured adipocytes. EHD1 is a member of a family of four closely related proteins (EHD1, EHD2, EHD3, and EHD4), which also contain a P-loop near the N terminus and a central coiled-coil domain. Analysis of cultured adipocytes stained with anti-GLUT4, anti-EHD1, and anti-EHD2 antibodies revealed that EHD1, but not EHD2, partially co-localizes with perinuclear GLUT4. Expression of a dominant-negative construct of EHD1 missing the EH domain (DeltaEH-EHD1) markedly enlarged endosomes, dispersed perinuclear GLUT4-containing membranes throughout the cytoplasm, and inhibited GLUT4 translocation to the plasma membranes of 3T3-L1 adipocytes stimulated with insulin. Similarly, small interfering RNA-mediated depletion of endogenous EHD1 protein also markedly dispersed perinuclear GLUT4 in cultured adipocytes. Moreover, EHD1 is shown to interact through its EH domain with the protein EHBP1, which is also required for insulin-stimulated GLUT4 movements and hexose transport. In contrast, disruption of EHD2 function was without effect on GLUT4 localization or translocation to the plasma membrane. Taken together, these results show that EHD1 and EHBP1, but not EHD2, are required for perinuclear localization of GLUT4 and reveal that loss of EHBP1 disrupts insulin-regulated GLUT4 recycling in cultured adipocytes.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Transporte Vesicular , Células 3T3-L1 , Adipócitos/citologia , Sequência de Aminoácidos , Animais , Células CHO , Células COS , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Cricetinae , Vesículas Citoplasmáticas/metabolismo , Expressão Gênica , Transportador de Glucose Tipo 4 , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Camundongos , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Musculares/genética , Transporte Proteico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Mol Cell Biol ; 24(12): 5447-58, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169906

RESUMO

Glucose homeostasis is controlled in part by regulation of glucose uptake into muscle and adipose tissue. Intracellular membrane vesicles containing the GLUT4 glucose transporter move towards the cell cortex in response to insulin and then fuse with the plasma membrane. Here we show that the fusion step is retarded by the inhibition of phosphatidylinositol (PI) 3-kinase. Treatment of insulin-stimulated 3T3-L1 adipocytes with the PI 3-kinase inhibitor LY294002 causes the accumulation of GLUT4-containing vesicles just beneath the cell surface. This accumulation of GLUT4-containing vesicles near the plasma membrane prior to fusion requires an intact cytoskeletal network and the unconventional myosin motor Myo1c. Remarkably, enhanced Myo1c expression under these conditions causes extensive membrane ruffling and overrides the block in membrane fusion caused by LY294002, restoring the display of GLUT4 on the cell exterior. Ultrafast microscopic analysis revealed that insulin treatment leads to the mobilization of GLUT4-containing vesicles to these regions of Myo1c-induced membrane ruffles. Thus, localized membrane remodeling driven by the Myo1c motor appears to facilitate the fusion of exocytic GLUT4-containing vesicles with the adipocyte plasma membrane.


Assuntos
Fusão de Membrana/fisiologia , Proteínas Musculares , Miosinas/fisiologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Exocitose , Transportador de Glucose Tipo 4 , Insulina/farmacologia , Camundongos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Morfolinas/farmacologia , Miosina Tipo I , Miosinas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
J Biol Chem ; 279(11): 10593-605, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14676205

RESUMO

Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene silencing inhibits endocytosis of transferrin into EEA1-positive endosomes as well as GLUT4 endocytosis into cultured adipocytes. EHD2 localizes with cortical actin filaments, whereas EHBP1 contains a putative actin-binding calponin homology domain. High expression of EHD2 or EHBP1 in intact cells mediates extensive actin reorganization. Thus EHD2 appears to connect endocytosis to the actin cytoskeleton through interactions of its N-terminal domain with membranes and its C-terminal EH domain with the novel EHBP1 protein.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Citoesqueleto/metabolismo , Endocitose , Células 3T3-L1 , Actinas/química , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Northern Blotting , Western Blotting , Células COS , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Endossomos/metabolismo , Inativação Gênica , Glucose/metabolismo , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Rodaminas/química , Fatores de Tempo , Distribuição Tecidual , Transfecção , Transferrina/química , Transferrina/metabolismo
7.
EMBO J ; 22(10): 2387-99, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12743033

RESUMO

Insulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region. Genomics screens show conventional kinesin KIF5B is highly expressed in adipocytes and this kinesin is partially co-localized with perinuclear GLUT4. Dominant-negative mutants of conventional kinesin light chain blocked outward GLUT4 vesicle movements and translocation of exofacial Myc-tagged GLUT4-green fluorescent protein to the plasma membrane in response to insulin. These data reveal that insulin signaling targets the engagement or initiates the movement of GLUT4-containing membranes on microtubules via conventional kinesin through a PI3-kinase-independent mechanism. This insulin signaling pathway regulating KIF5B function appears to be required for GLUT4 translocation to the plasma membrane.


Assuntos
Adipócitos/efeitos dos fármacos , Transporte Biológico/fisiologia , Insulina/farmacologia , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Adipócitos/citologia , Adipócitos/fisiologia , Androstadienos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Transportador de Glucose Tipo 4 , Insulina/fisiologia , Membranas Intracelulares/metabolismo , Cinesinas/genética , Proteínas Luminescentes/metabolismo , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Vesículas Transportadoras/metabolismo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...