Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046012

RESUMO

The neuropathological effects of phenylketonuria (PKU) stem from the inability of the body to metabolize excess phenylalanine (Phe), resulting in accumulation of Phe in the blood and brain. Since the kidney normally reabsorbs circulating amino acids with high efficiency, we hypothesized that preventing the renal uptake of Phe might provide a disposal pathway that could lower systemic Phe levels. SLC6A19 is a neutral amino acid transporter responsible for absorption of the majority of free Phe in the small intestine and reuptake of Phe by renal proximal tubule cells. Transgenic KO mice lacking SLC6A19 have elevated levels of Phe and other amino acids in their urine but are otherwise healthy. Here, we crossed the Pahenu2 mouse model of PKU with the Slc6a19-KO mouse. These mutant/KO mice exhibited abundant excretion of Phe in the urine and an approximately 70% decrease in plasma Phe levels. Importantly, brain Phe levels were decreased by 50%, and the levels of key neurotransmitters were increased in the mutant/KO mice. In addition, a deficit in spatial working memory and markers of neuropathology were corrected. Finally, treatment of Pahenu2 mice with Slc6a19 antisense oligonucleotides lowered Phe levels. The results suggest that inhibition of SLC6A19 may represent a novel approach for the treatment of PKU and related aminoacidopathies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/análise , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/efeitos dos fármacos , Fenilcetonúrias/terapia , Aminas , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos Neutros/sangue , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Inatas/terapia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Knockout , Morfolinos/farmacologia , Oligonucleotídeos/farmacologia , Fenilalanina/sangue , Fenilalanina/metabolismo , Fenilcetonúrias/patologia , Reabsorção Renal/efeitos dos fármacos
2.
Neurobiol Learn Mem ; 125: 152-162, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385257

RESUMO

Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Memória Espacial/fisiologia , Sinapses/fisiologia , Animais , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos
3.
Acta Neuropathol Commun ; 2: 131, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25178488

RESUMO

INTRODUCTION: Hirano bodies are actin-rich intracellular inclusions found in the brains of patients with neurodegenerative conditions such as Alzheimer's disease or frontotemporal lobar degeneration-tau. While Hirano body ultrastructure and protein composition have been well studied, little is known about the physiological function of Hirano bodies in an animal model system. RESULTS: Utilizing a Cre/Lox system, we have generated a new mouse model which develops an age-dependent increase in the number of model Hirano bodies present in both the CA1 region of the hippocampus and frontal cortex. These mice develop normally and experience no overt neuron loss. Mice presenting model Hirano bodies have no abnormal anxiety or locomotor activity as measured by the open field test. However, mice with model Hirano bodies develop age-dependent impairments in spatial working memory performance assessed using a delayed win-shift task in an 8-arm radial maze. Synaptic transmission, short-term plasticity, and long-term plasticity was measured in the CA1 region from slices obtained from both the ventral and dorsal hippocampus in the same mice whose spatial working memory was assessed. Baseline synaptic responses, paired pulse stimulation and long-term potentiation measurements in the ventral hippocampus were indistinguishable from control mice. In contrast, in the dorsal hippocampus, synaptic transmission at higher stimulus intensities were suppressed in 3 month old mice with Hirano bodies as compared with control mice. In addition, long-term potentiation was enhanced in the dorsal hippocampus of 8 month old mice with Hirano bodies, concurrent with observed impairment of spatial working memory. Finally, an inflammatory response was observed at 8 months of age in mice with Hirano bodies as assessed by the presence of reactive astrocytes. CONCLUSION: This study shows that the presence of model Hirano bodies initiates an inflammatory response, alters hippocampal synaptic responses, and impairs spatial working memory in an age-dependent manner. This suggests that Hirano bodies may promote disease progression. This new model mouse provides a tool to investigate how Hirano bodies interact with other pathologies associated with Alzheimer's disease. Hirano bodies likely play a complex and region specific role in the brain during neurodegenerative disease progression.


Assuntos
Hipocampo/patologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Transtornos da Memória/patologia , Memória de Curto Prazo/fisiologia , Percepção Espacial/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Comportamento Exploratório/fisiologia , Técnicas In Vitro , Corpos de Inclusão/ultraestrutura , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação/genética , Potenciais Sinápticos/genética
4.
BMC Neurosci ; 15: 74, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929931

RESUMO

BACKGROUND: Hirano bodies are actin-rich paracrystalline inclusions found in brains of patients with Alzheimer's disease (AD), frontotemporal dementia (FTD), and in normal aged individuals. Although studies of post-mortem brain tissue provide clues of etiology, the physiological function of Hirano bodies remains unknown. A cell culture model was utilized to study the interactions of mutant tau proteins, model Hirano bodies, and GSK3ß in human astrocytoma cells. RESULTS: Most tau variants showed co-localization with model Hirano bodies. Cosedimentation assays revealed this interaction may be direct, as recombinant purified forms of tau are all capable of binding F-actin. Model Hirano bodies had no effect or enhanced cell death induced by tau in the absence of amyloid precursor protein intracellular domain (AICD). In the presence of AICD and tau, synergistic cell death was observed in most cases, and model Hirano bodies decreased this synergistic cell death, except for forms of tau that caused significant cell death in the presence of Hirano bodies only. A role for the kinase GSK3ß is suggested by the finding that a dominant negative form of GSK3ß reduces this synergistic cell death. A subset of Hirano bodies in brain tissue of both Alzheimer's disease and normal aged individuals was found to contain tau, with some Hirano bodies in Alzheimer's disease brains containing hyperphosphorylated tau. CONCLUSION: The results demonstrate a complex interaction between tau and AICD involving activation of GSK3ß in promoting cell death, and the ability of Hirano bodies to modulate this process.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/fisiologia , Astrocitoma/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Corpos de Inclusão/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/química , Linhagem Celular , Glicogênio Sintase Quinase 3 beta , Humanos , Estrutura Terciária de Proteína
5.
PLoS One ; 7(9): e44996, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028730

RESUMO

The main pathological hallmarks of Alzheimer's disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP) and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer's disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58) enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/farmacologia , Citoproteção/efeitos dos fármacos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Modelos Biológicos , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Etoposídeo/farmacologia , Histona Acetiltransferases/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...