Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546995

RESUMO

Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.

2.
J Lipid Res ; 61(12): 1675-1686, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33109681

RESUMO

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.


Assuntos
Estresse do Retículo Endoplasmático/genética , Hidroximetilglutaril-CoA Redutases/deficiência , Hidroximetilglutaril-CoA Redutases/genética , Fígado/metabolismo , Terpenos/metabolismo , Deleção de Genes
3.
Curr Opin Lipidol ; 30(3): 172-176, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30893109

RESUMO

PURPOSE OF REVIEW: The purpose is to review recent progress in applying the CRISPR/Cas9 system to lipid metabolism and therapeutics. RECENT FINDINGS: The CRISPR/Cas9 system has been used to generate knockout animals for lipid genes in multiple species. Somatic genome editing with CRISPR/Cas9 can efficiently disrupt genes in adult animals, including a new strategy for generating atherosclerosis. Refinements to the CRISPR/Cas9 system including epigenetic modulators and base editors offer new avenues to manipulate gene expression. The recent report of germline genome editing in humans highlights the promise as well as perils of this technology. SUMMARY: CRISPR/Cas9 is a transformative technology that will help advance on our understanding of lipid metabolism and physiology. Somatic genome editing is a particularly promising approach for editing genes in tissues of live organisms, and represents a new means of addressing unmet therapeutic challenges in humans. Educational outreach, public debate, and consideration of ethics and safety must guide the use of genome editing in humans.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Terapia Genética , Metabolismo dos Lipídeos/genética , Animais , Humanos
5.
ACS Chem Neurosci ; 8(9): 1880-1888, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28617576

RESUMO

Zebrafish (Danio rerio) have recently emerged as useful model organism for the study of neuronal function. Here, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure locally evoked dopamine release and uptake in zebrafish whole brain preparations and results were compared with those obtained from brain slices. Evoked dopamine release ([DA]max) was similar in whole brain and sagittal brain slice preparations (0.49 ± 0.13 µM in whole brain and 0.59 ± 0.28 µM in brain slices). Treatment with α-methyl-p-tyrosine methyl ester (αMPT), an inhibitor of tyrosine hydroxylase, diminished release and the electrochemical signal reappeared after subsequent drug washout. No observed change in stimulated release current occurred after treatment with desipramine or fluoxetine in the whole brain. Treatment with the uptake inhibitors, nomifensine or GBR 12909 increased [DA]max, while treatment with sulpiride, a D2 dopamine autoreceptor antagonist, resulted in increased stimulated dopamine release in whole brain, but had no effect on release in slices. Dopamine release in whole brains increased progressively up to an electrical stimulation frequency of 25 Hz, while release in slices increased up to a frequency of only 10 Hz and then plateaued, highlighting another key difference between these preparations. We observed a lag in peak dopamine release following stimulation, which we address using diffusion models and pharmacological treatments. Collectively, these results demonstrate the electrochemical determination of dopamine release in the whole, intact brain of a vertebrate species ex vivo and are an important step for carrying out further experiments in zebrafish.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Estimulação Elétrica , Microeletrodos , Técnicas de Cultura de Tecidos , Animais , Autorreceptores/antagonistas & inibidores , Autorreceptores/metabolismo , Encéfalo/efeitos dos fármacos , Difusão , Antagonistas dos Receptores de Dopamina D2/farmacologia , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Modelos Neurológicos , Inibidores da Captação de Neurotransmissores/farmacologia , Receptores de Dopamina D2/metabolismo , Técnicas de Cultura de Tecidos/métodos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...