Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biol Chem ; 286(9): 6918-28, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21177860

RESUMO

Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Simulação por Computador , Cisteína Endopeptidases/farmacologia , Fator X/metabolismo , Fator Xa/metabolismo , Imunoglobulinas/farmacologia , Proteínas de Insetos/farmacologia , Dados de Sequência Molecular , Mariposas/metabolismo , Proteínas de Neoplasias/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
2.
Journal of Biological Chemistry ; 286(9): 6918-6928, 2011.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064204

RESUMO

Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not ã-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.


Assuntos
Animais , Coagulação Sanguínea , Intoxicação/classificação , Fator X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...