Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 9: e1173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346621

RESUMO

Methods of computer-assisted diagnostics that utilize deep learning techniques on recordings of respiratory sounds have been developed to diagnose bronchial asthma. In the course of the study an anonymous database containing audio files of respiratory sound recordings of patients suffering from different respiratory diseases and healthy volunteers has been accumulated and used to train the software and control its operation. The database consists of 1,238 records of respiratory sounds of patients and 133 records of volunteers. The age of tested persons was from 18 months to 47 years. The sound recordings were captured during calm breathing at four points: in the oral cavity, above the trachea, at the chest, the second intercostal space on the right side, and at the point on the back. The developed software provides binary classifications (diagnostics) of the type: "sick/healthy" and "asthmatic patient/non-asthmatic patient and healthy". For small test samples of 50 (control group) to 50 records (comparison group), the diagnostic sensitivity metric of the first classifier was 88%, its specificity metric -86% and accuracy metric -87%. The metrics for the classifier "asthmatic patient/non-asthmatic patient and healthy" were 92%, 82%, and 87%, respectively. The last model applied to analyze 941 records in asthmatic patients indicated the correct asthma diagnosis in 93% of cases. The proposed method is distinguished by the fact that the trained model enables diagnostics of bronchial asthma (including differential diagnostics) with high accuracy irrespective of the patient gender and age, stage of the disease, as well as the point of sound recording. The proposed method can be used as an additional screening method for preclinical bronchial asthma diagnostics and serve as a basis for developing methods of computer assisted patient condition monitoring including remote monitoring and real-time estimation of treatment effectiveness.

2.
JMIR Form Res ; 6(7): e31200, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35584091

RESUMO

BACKGROUND: Respiratory sounds have been recognized as a possible indicator of behavior and health. Computer analysis of these sounds can indicate characteristic sound changes caused by COVID-19 and can be used for diagnostics of this illness. OBJECTIVE: The aim of the study is to develop 2 fast, remote computer-assisted diagnostic methods for specific acoustic phenomena associated with COVID-19 based on analysis of respiratory sounds. METHODS: Fast Fourier transform (FFT) was applied for computer analysis of respiratory sound recordings produced by hospital doctors near the mouths of 14 patients with COVID-19 (aged 18-80 years) and 17 healthy volunteers (aged 5-48 years). Recordings for 30 patients and 26 healthy persons (aged 11-67 years, 34, 60%, women), who agreed to be tested at home, were made by the individuals themselves using a mobile telephone; the records were passed for analysis using WhatsApp. For hospitalized patients, the illness was diagnosed using a set of medical methods; for outpatients, polymerase chain reaction (PCR) was used. The sampling rate of the recordings was from 44 to 96 kHz. Unlike usual computer-assisted diagnostic methods for illnesses based on respiratory sound analysis, we proposed to test the high-frequency part of the FFT spectrum (2000-6000 Hz). RESULTS: Comparing the FFT spectra of the respiratory sounds of patients and volunteers, we developed 2 computer-assisted methods of COVID-19 diagnostics and determined numerical healthy-ill criteria. These criteria were independent of gender and age of the tested person. CONCLUSIONS: The 2 proposed computer-assisted diagnostic methods, based on the analysis of the respiratory sound FFT spectra of patients and volunteers, allow one to automatically diagnose specific acoustic phenomena associated with COVID-19 with sufficiently high diagnostic values. These methods can be applied to develop noninvasive screening self-testing kits for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...