Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(28): 5956-5960, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38975898

RESUMO

Ferrier photobromination enables direct synthetic access to valuable 5-C-bromosugars but has limitations that restrict its broader use. The reaction is typically conducted in CCl4 heated at reflux with irradiation by broad spectrum, energy-inefficient heat lamps. Herein, we demonstrate that the reaction proceeds rapidly and efficiently with PhCF3 as a safe and environmentally benign alternative to CCl4 at mild temperatures (≤40 °C) inside a compact photoreactor fitted with purple light-emitting diodes (LEDs).

2.
Carbohydr Polym ; 318: 121066, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479460

RESUMO

Thalli of the endemic epiphytic New Zealand red seaweed Pyrophyllon subtumens are known to contain a high level of xylose and a notable amount of arabinose but the extracted polysaccharide has not been characterised. The linkage/substitution of individual sugars within the water-soluble polysaccharide extract and various derivatives were determined by chemical and spectroscopic methods. No 3-linked sugars nor any d-galactose were found, which excluded agar-, carrageenan- or mixed 3-linked/4-linked ß-d-xylan-type polysaccharides found in many other red macroalgae. Instead, the polysaccharide backbone contained predominantly 4-linked ß-d-xylopyranosyl, 4-linked 3,6-anhydro-l-galactopyranosyl and 4-linked l-galactopyranosyl units. Some of each type of sugar were sulfated at various positions. Some xylosyl units were substituted at the 2- or 3-position with l-arabinosyl units. The polysaccharide is complex and likely contains a range of structures. However, partial sequencing was successfully used to recover and identify a novel disaccharide 4-O-d-xylopyranosyl-3,6-anhdydro-l-galactopyranose, which indicates a unique →4)-ß-d-Xylp-(1 â†’ 4)-3,6-anhydro-l-Galp-(1 â†’ repeat unit in the polysaccharide.


Assuntos
Rodófitas , Alga Marinha , Dissacarídeos , Polissacarídeos , Carragenina , Galactose
3.
Eur J Med Chem ; 250: 115143, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841086

RESUMO

Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12ß-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12ß-methyl-18-nor-bile acids that were synthesized from 12ß-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.


Assuntos
Ácidos e Sais Biliares , Receptores Acoplados a Proteínas G , Ácidos e Sais Biliares/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais , Fígado/metabolismo , Ácido Quenodesoxicólico
4.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408759

RESUMO

Bile acid receptors have been identified as important targets for the development of new therapeutics to treat various metabolic and inflammatory diseases. The synthesis of new bile acid analogues can help elucidate structure-activity relationships and define compounds that activate these receptors selectively. Towards this, access to large quantities of a chenodeoxycholic acid derivative bearing a C-12 methyl and a C-13 to C-14 double bond provided an interesting scaffold to investigate the chemical manipulation of the C/D ring junction in bile acids. The reactivity of this alkene substrate with various zinc carbenoid species showed that those generated using the Furukawa methodology achieved selective α-cyclopropanation, whereas those generated using the Shi methodology reacted in an unexpected manner giving rise to a rearranged skeleton whereby the C ring has undergone contraction to form a novel spiro-furan ring system. Further derivatization of the cyclopropanated steroid included O-7 oxidation and epimerization to afford new bile acid derivatives for biological evaluation.


Assuntos
Ácidos e Sais Biliares , Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/química , Oxirredução , Esteroides , Relação Estrutura-Atividade
5.
Org Biomol Chem ; 20(17): 3511-3527, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35230376

RESUMO

In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a C16-hydroxy group emerged as ligands of FXR and TGR5 with remarkable agonistic efficacies. Inspired by these findings, we synthesised a series of C16-hydroxylated 12ß-methyl-18-nor-bile acid analogues from a Δ13(17)-12ß-methyl-18-nor-chenodeoxycholic acid intermediate (16), the synthesis of which we reported previously. The preparation of these aptly named 12ß-methyl-18-nor-avicholic acids (17, 18, 41 and 42) was accomplished via allylic oxidation at C16, hydrogenation of the C13→C17 double bond and selective reduction of the C16-carbonyl group. Described also are various side products which were isolated during the evaluation of methods to affect the initial allylic oxidation. In addition, C23-methyl modified 12ß-methyl-18-nor-bile acids with (48, 49, 51 and 52) and without a C16-hydroxy group (45, 46 and 55), were synthesized to enable comparison of biological activities between these compounds and their un-methylated counterparts. As a result of our investigations we identified (23R)-12ß,23-dimethyl-18-nor-chenodeoxycholic acid (46) and 12ß-methyl-17-epi-18-nor-chenodeoxycholic acid 53 as TGR5 ligands with EC50 values of 25 µM.


Assuntos
Ácidos e Sais Biliares , Ácido Quenodesoxicólico , Ácidos e Sais Biliares/farmacologia , Ácido Quenodesoxicólico/análogos & derivados , Hidrogenação , Ligantes
6.
Biomolecules ; 13(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36671460

RESUMO

Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.


Assuntos
Doença de Parkinson , Humanos , Ácidos e Sais Biliares , Doença de Parkinson/tratamento farmacológico , Ácido Ursodesoxicólico/farmacologia , Colanos/química
7.
ACS Omega ; 6(38): 25019-25039, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604682

RESUMO

Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12ß-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12ß-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12ß-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12ß-methyl-18-nor-chenodeoxycholic acid (27a).

8.
J Org Chem ; 86(13): 8843-8850, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34126010

RESUMO

3'-Deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) is a novel antiviral molecule produced by the enzyme viperin as part of the innate immune response. ddhCTP has been shown to act as an obligate chain terminator of flavivirus and SARS-CoV-2 RNA-dependent RNA polymerases; however, further biophysical studies have been precluded by limited access to this promising antiviral. Herein, we report a robust and scalable synthesis of ddhCTP as well as the mono- and diphosphates ddhCMP and ddhCDP, respectively. Identification of a 2'-silyl ether protection strategy enabled selective synthesis and facile purification of the 5'-triphosphate, culminating in the preparation of ddhCTP on a gram scale.


Assuntos
Antivirais , COVID-19 , Citidina Trifosfato , Humanos , Proteínas , RNA Viral , SARS-CoV-2
9.
J Labelled Comp Radiopharm ; 62(2): 67-76, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548247

RESUMO

Morquio A syndrome is an autosomal mucopolysaccharide storage disorder that leads to accumulation of keratan sulfate. Diagnosis of this disease can be aided by measuring the levels of keratan sulfate in the urine. This requires the liquid chromatography tandem mass spectrometry (LCMS/MS) measurement of sulfated N-acetyl-d-lactosamines in the urine after cleavage of the keratan sulfate with keratanase II. Quantification requires isotopically-labelled internal standards. The synthesis of these 13 C6 -labelled standards from 13 C6 -galactose and N-acetylglucosamine is described. The required protected disaccharide is prepared utilising a regioselective, high yielding ß-galactosylation of a partially protected glucosamine acceptor and an inverse addition protocol. Subsequent synthesis of the 13 C6 -labelled mono and disulfated N-acetyllactosamines was achieved in five and eight steps, respectively, from this intermediate to provide internal standards for the LCMS/MS quantification of keratan sulfate in urine.


Assuntos
Acetilgalactosamina/análogos & derivados , Espectrometria de Massas/métodos , Técnicas de Diagnóstico Molecular/métodos , Acetilgalactosamina/síntese química , Isótopos de Carbono/química , Sulfato de Queratano/análise , Sulfato de Queratano/urina , Mucopolissacaridose IV/urina
11.
Carbohydr Res ; 346(12): 1592-8, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645885

RESUMO

Two simple and reliably accessible intermediates, N-carboxypentyl- and N-aminohexyl-1-deoxy-D-galactonojirimycin were employed for the synthesis of a set of terminally N-dansyl substituted derivatives. Reaction of the terminal carboxylic acid of N-carboxypentyl-1-deoxy-D-galactonojirimycin with N-dansyl-1,6-diaminohexane provided the chain-extended fluorescent derivative. Employing bis(6-dansylaminohexyl)amine, the corresponding branched di-N-dansyl compound was obtained. Partially protected N-aminohexyl-1-deoxy-D-galactonojirimycin served as intermediate for two additional chain-extended fluorescent 1-deoxy-D-galactonojirimycin (1-DGJ) derivatives featuring terminal dansyl groups in the N-alkyl substituent. These new compounds are strong inhibitors of d-galactosidases and may serve as leads en route to pharmacological chaperones for GM1-gangliosidosis.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Proteínas de Bactérias/metabolismo , Compostos de Dansil/química , Inibidores Enzimáticos/farmacologia , Gangliosidose GM1/enzimologia , Fosfatidilcolinas/química , Proteínas de Plantas/metabolismo , beta-Galactosidase , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/farmacologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Gatos , Linhagem Celular , Diaminas/química , Inibidores Enzimáticos/síntese química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/fisiopatologia , Humanos , Iminas/química , Cinética , Lisossomos/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/farmacologia , Sondas Moleculares/síntese química , Sondas Moleculares/farmacologia , Terapia de Alvo Molecular , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Álcoois Açúcares/química , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/química , beta-Galactosidase/metabolismo
12.
J Org Chem ; 76(2): 358-72, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21190319

RESUMO

Ethyl- (7), benzyl- (8), tert-butyl- (9), and fluorenylmethyl-4-chlorobenzoyloxycarbamates (10) have been prepared as storable and easy-to-prepare nitrogen sources for use in the intermolecular Sharpless aminohydroxylation reaction and its asymmetric variant. These reagents were found to be effective under base-free reaction conditions. The scope and limitations of these methods have been explored using a variety of alkenes, among which, trans-cinnamates, in particular, proved to be good substrates.


Assuntos
Alcanos/química , Carbamatos/química , Indicadores e Reagentes/química , Nitrogênio/química , Catálise , Cromatografia Líquida de Alta Pressão , Hidroxilação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo , Raios Ultravioleta
13.
Carbohydr Res ; 345(10): 1371-6, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20471633

RESUMO

Cyclization by double reductive amination of d-xylo-hexos-5-ulose with methyl 6-aminohexanoate gave (methoxycarbonyl)pentyl-1-deoxynojirimycin. Reaction of the terminal carboxylic acid with N-dansyl-1,6-diaminohexane provided the corresponding chain-extended fluorescent derivative. By reaction with bis(6-dansylaminohexyl)amine, the corresponding branched di-N-dansyl compound was obtained. Both compounds are strong inhibitors of d-glucosidases and could also be shown to distinctly improve, at sub-inhibitory concentrations, the activity of beta-glucocerebrosidase in a Gaucher fibroblast (N370S) cell-line through chaperoning of the enzyme to the lysosome.


Assuntos
1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Doença de Gaucher/patologia , Nitrogênio/química , Fosfatidilcolinas/química , 1-Desoxinojirimicina/síntese química , Linhagem Celular , Inibidores Enzimáticos/síntese química , Fibroblastos/patologia , Glucosidases/antagonistas & inibidores , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Rhizobium/enzimologia , Saccharomyces cerevisiae/enzimologia
14.
Acta Crystallogr C ; 66(Pt 3): m65-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20203397

RESUMO

The sodium salt of [immucillin-A-CO(2)H](-) (Imm-A), namely catena-poly[[[triaquadisodium(I)](mu-aqua)[mu-(1S)-N-carboxylato-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol][triaquadisodium(I)][mu-(1S)-N-carboxylato-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol]] tetrahydrate], {[Na(2)(C(12)H(13)N(4)O(6))(2)(H(2)O)(7)] x 4 H(2)O}(n), (I), forms a polymeric chain via Na(+)-O interactions involving the carboxylate and keto O atoms of two independent Imm-A molecules. Extensive N,O-H...O hydrogen bonding utilizing all water H atoms, including four waters of crystallization, provides crystal packing. The structural definition of this novel compound was made possible through the use of synchrotron radiation utilizing a minute fragment (volume approximately 2.4 x 10(-5) mm(-3)) on a beamline optimized for protein data collection. A summary of intra-ring conformations for immucillin structures indicates considerable flexibility while retaining similar intra-ring orientations.


Assuntos
Adenina/análogos & derivados , Polímeros/química , Pirrolidinas/química , Ribitol/análogos & derivados , Sódio/química , Adenina/química , Adenosina/análogos & derivados , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Radiação , Ribitol/química , Estereoisomerismo , Síncrotrons
15.
J Med Chem ; 52(4): 1126-43, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19170524

RESUMO

ImmH (1) and DADMe-ImmH (2) are potent inhibitors of human purine nucleoside phoshorylase (PNP), developed by us and currently in clinical trials for the treatment of a variety of T-cell related diseases. Compounds 1 and 2 were used as templates for the design and synthesis of a series of acyclic immucillin analogues (8-38) in order to identify simplified alternatives to 1 and 2. SerMe-ImmG (8) and DATMe-ImmG (9) displayed the lowest inhibition constants of 2.1 and 3.4 pM, respectively, vs PNP. It was postulated that the flexible natures of 8 and 9 enabled them to adopt conformations resembling those of 1 and 2 within the active site of PNP and that the positioning of two hydroxyl groups was critical for picomolar activity. SerMe-ImmH (10, K(d) = 5.2 pM) was shown to be orally available in mice with a long biological residence time on blood PNP.


Assuntos
Adenina/análogos & derivados , Desenho de Fármacos , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirrolidinas/química , Pirrolidinas/farmacologia , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Adenosina/análogos & derivados , Domínio Catalítico , Humanos , Conformação Molecular , Maleabilidade , Ligação Proteica , Pirrolidinas/síntese química , Relação Estrutura-Atividade
16.
Carbohydr Res ; 344(2): 210-6, 2009 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-19007924

RESUMO

The identification of the polysaccharides from tetrasporophytic plants of nine endemic New Zealand species belonging to the Gigartinaceae, 'Gigartina' ancistroclada, 'G.' grandifida, Gigartina dilatata, G. divaricata, G. macrocarpa, G. marginifera, G. pachymenioides, G. sp. 'Lindauer 164' and Sarcothalia livida using infra-red spectroscopy in conjunction with constituent sugar and glycosyl linkage/substitution analysis is reported. All nine species contain galactans with structures consistent with lambda-type carrageenans. Differences in the structures of the galactans in these and a further six previously studied species indicate chemotaxonomically distinct groupings that correspond to Sarcothalia, 'Sarcothalia' and Gigartina genera plus some outliers. These distinct, chemotaxonomic groupings are aligned to those determined by rbcL sequence analysis reported in the literature.


Assuntos
Galactanos/química , Rodófitas/química , Rodófitas/classificação , Sequência de Carboidratos , Galactanos/análise , Estrutura Molecular , Nova Zelândia , Polissacarídeos/análise , Polissacarídeos/química , Espectrofotometria Infravermelho
17.
Nucleic Acids Symp Ser (Oxf) ; (52): 75-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776260

RESUMO

Transition state structures can be derived from kinetic isotope effects and computational chemistry. Molecular electrostatic potential maps of transition states serve as blueprints to guide synthesis of transition state analogue inhibitors of target enzymes. 5'- Methylthioadenosine phosphorylase (MTAP) functions in the polyamine pathway by recycling methylthioadenosine (MTA) and maintaining cellular S-adenosylmethionine (SAM). Its transition state structure was used to guide synthesis of MT-DADMe-ImmA, a picomolar inhibitor that shows anticancer effects against solid tumors. Biochemical and genomic analysis suggests that MTAP inhibition acts by altered DNA methylation and gene expression patterns. A related bacterial enzyme, 5'-methylthioadenosine nucleosidase (MTAN), functions in pathways of quorum sensing involving AI-1 and AI-2 molecules. Transition states have been solved for several bacterial MTANs and used to guide synthesis of powerful inhibitors with dissociation constants in the femtomolar to picomolar range. BuT-DADMe-ImmA blocks quorum sensing in Vibrio cholerae without changing bacterial growth rates. Transition state analogue inhibitors show promise as anticancer and antibacterial agents.


Assuntos
Adenina/análogos & derivados , Antibacterianos/química , Antineoplásicos/química , N-Glicosil Hidrolases/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Percepção de Quorum/efeitos dos fármacos , Adenina/química , Adenina/farmacologia , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neoplasias de Cabeça e Pescoço/enzimologia , Humanos , Masculino , Camundongos , Pirrolidinas/química , Pirrolidinas/farmacologia , S-Adenosilmetionina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Med Chem ; 51(4): 948-56, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18251493

RESUMO

N-ribosyl phosphorylases and hydrolases catalyze nucleophilic displacement reactions by migration of the cationic ribooxacarbenium carbon from the fixed purine to phosphate and water nucleophiles, respectively. As the lysis reaction progresses along the reaction coordinate, the distance between the purine and carbocation increases and the distance between carbocation and nucleophile decreases. Immucillin-H and DADMe-immucillin-H have been shown previously to be potent inhibitors of purine nucleoside phosphorylases and lie more toward the reactant and products side of this reaction coordinate, respectively. Both these enzyme inhibitors, which are currently in human clinical trials for different indications, are chiral and expensive to manufacture. We now report the synthesis of azetidine analogues of the DADMe-immucillins, which, despite their lack of stereochemical complexity, remain potent inhibitors (equilibrium dissociation constants as low as 229 pM) of purine nucleoside phosphorylase (PNP), methylthioadenosine phosphorylase (MTAP), and methylthioadenosine nucleosidase (MTAN), with potential utility as drug candidates.


Assuntos
Azetidinas/síntese química , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/síntese química , Pirrolidinas/síntese química , Animais , Azetidinas/química , Bovinos , Humanos , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/química , Pirimidinonas/química , Pirrolidinas/química , Relação Estrutura-Atividade
19.
J Am Chem Soc ; 130(3): 842-4, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18154341

RESUMO

Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.


Assuntos
Inibidores Enzimáticos/química , Nucleosídeos de Purina/química , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/química , Pirimidinonas/química , Pirrolidinas/química , Cristalografia por Raios X , Humanos , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
20.
Nucleic Acids Symp Ser (Oxf) ; (51): 63-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18029587

RESUMO

The characterization of the transition state structure of a number of N-ribosyltransferases has enabled the design and synthesis of some extremely powerful inhibitors of these enzymes. We have three generations of inhibitors for some nucleoside processing enzymes which are therapeutic targets, and the potency of these compounds confers special advantages in their development as new drugs against cancer, autoimmune diseases, microbial infections and malaria.


Assuntos
Inibidores Enzimáticos/química , N-Glicosil Hidrolases/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Animais , Bovinos , Humanos , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...