Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Burns ; 49(2): 401-407, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35513952

RESUMO

BACKGROUND: Hypothermia in severely burned patients is associated with a significant increase in morbidity and mortality. The use of an oesophageal heat exchanger tube (EHT) can improve perioperative body temperatures in severely burned patients. The aim of this study was to investigate the intraoperative warming effect of oesophageal heat transfer in severe burn patients. METHODS: Single-centre retrospective study performed at the Burns Centre of the University Hospital Zurich. Between January 2020 and May 2021 perioperative temperature management with EHT was explored in burned patients with a total body surface area (TBSA) larger than 30%. Data from patients, who received perioperative temperature management by EHT, were compared to data from the same patients during interventions performed under standard temperature management matching for length and type of intervention. RESULTS: A total of 30 interventions (15 with and 15 without EHT) in 10 patients were analysed. Patient were 38 [26-48] years of age, presented with severe burns covering a median of 50 [42-64] % TBSA and were characterized by an ABSI of 10 [8-12] points. When receiving EHT management patients experienced warming at 0.07 °C per minute (4.2 °C/h) compared to a temperature loss of - 0.03 °C per minute (1.8 °C/h) when only receiving standard temperature management (p < 0.0001). No adverse or serious adverse events were reported. CONCLUSION: The use of an oesophageal heat transfer device was effective and safe in providing perioperative warming to severely burned patients when compared to a standard temperature management protocol. By employing an EHT as primary temperature management device perioperative hypothermia in severely burned patients can possibly be averted, potentially leading to reduced hypothermia-associated complications.


Assuntos
Queimaduras , Hipotermia Induzida , Hipotermia , Humanos , Temperatura Corporal , Temperatura , Estudos Retrospectivos , Queimaduras/terapia
2.
Langmuir ; 34(29): 8532-8541, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29940739

RESUMO

The effect of humidity on flame-made metal oxide agglomerate morphology and size distribution is investigated, for the first time to our knowledge, and compared to that on soot, which has been widely studied. Understanding the impact of humidity on such characteristics is essential for storage, handling, processing, and eventual performance of nanomaterials. More specifically, broadly used agglomerates of flame-made silica nanoparticles are humidified at various saturation ratios, S = 0.2-1.5, and dried before characterization with a differential mobility analyzer (DMA), an aerosol particle mass (APM) analyzer, and transmission electron microscopy. At high humidity, the constituent single and/or aggregated (chemically bonded) primary particles (PPs) rearrange to balance the capillary forces induced by condensation-evaporation of liquid bridges between PPs. Larger agglomerates restructure more than smaller ones, narrowing their mobility size distribution. After humidification at S = 1.5 and drying, agglomerates collapse into compact structures that follow a fractal scaling law with mass-mobility exponent Dfm = 3.02 ± 0.11 and prefactor km = 0.27 ± 0.07. This critical S = 1.5 for silica agglomerates is larger than the 1.26 obtained for soot because of the hydrophilic surface of silica that delays water evaporation. The relative effective density, ρeff/ρ, of collapsed agglomerates becomes invariant of mobility diameter, dm, similar to that of fluidized and spray-dried granules. The average silica ρeff/ρ = 0.28 ± 0.02 is smaller than the 0.36 ± 0.04 measured for the humidified-dried soot because of the larger size of silica aggregates, dm/ dp, and number of constituent primary particles, np, of diameter dp. This is verified by tandem-DMA (TDMA) measurements, yielding maximum dm = 3 dp or 5 dp and np = 13 or 36 for the soot or silica aggregates studied here, in good agreement with those reported from microscopy and high-pressure agglomerate dispersion. A scaling law relating the initial dm,o to dm, Dfm, and km after condensation-drying is developed. The mass-mobility relationship of collapsed silica and soot agglomerates obtained by combining this law with fast TDMA measurements is in excellent agreement with that measured by the direct, but tedious, DMA-APM analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...