Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 51(2): 537-545, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31667801

RESUMO

A new strain of Trichoderma reesei (teleomorph Hypocrea jecorina) with high cellulase production was obtained by exposing the spores from T. reesei QM9414 to an ultraviolet light followed by selecting fast-growing colonies on plates containing CMC (1% w/v) as the carbon source. The mutant T. reesei RP698 reduced cultivation period to 5 days and increased tolerance to the end-products of enzymatic cellulose digestion. Under submerged fermentation conditions, FPase, CMCase, and Avicelase production increased up to 2-fold as compared to the original QM9414 strain. The highest levels of cellulase activity were obtained at 27 °C after 72 h with Avicel®, cellobiose, and sugarcane bagasse as carbon sources. The temperature and pH activity optima of the FPase, CMCase, and Avicelase were approximately 60 °C and 5.0, respectively. The cellulase activity was unaffected by the addition of 140 mM glucose in the enzyme assay. When T. reesei RP698 crude extract was supplemented by the addition of ß-glucosidase from Scytalidium thermophilum, a 2.3-fold increase in glucose release was observed, confirming the low inhibition by the end-product of cellulose hydrolysis. These features indicate the utility of this mutant strain in the production of enzymatic cocktails for biomass degradation.


Assuntos
Celulase/biossíntese , Fermentação , Hypocreales/enzimologia , Hypocreales/genética , Biomassa , Proteínas Fúngicas/biossíntese , Hidrólise , Hypocreales/efeitos da radiação , Mutação , Saccharum , Raios Ultravioleta
2.
Int J Biol Macromol ; 114: 741-750, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580998

RESUMO

A ß-xylosidase from Colletotrichum graminicola (Bxcg) was purified. The enzyme showed high halotolerance, retaining about 63% of the control activity in the presence of 2.5molL-1 NaCl. The presence of NaCl has not affected the optimum reaction temperature (65°C), but the optimum pH was slightly altered (from 4.5 to 5.0) at high salt concentrations. Bxcg was fully stable at 50°C for 24h and over a wide pH range even in the presence of NaCl. In the absence of salt Bxcg hydrolyzed p-nitrophenyl-ß-d-xylopyranoside with maximum velocity of 348.8±11.5Umg-1 and high catalytic efficiency (1432.7±47.3Lmmol-1s-1). Bxcg revealed to be a bifunctional enzyme with both ß-xylosidase and α-l-arabinofuranosidase activities, and hydrolyzed xylooligosaccharides containing up to six pentose residues. The enzyme showed high synergistic effect (3.1-fold) with an endo-xylanase for the hydrolysis of beechwood xylan, either in the absence or presence of 0.5molL-1 NaCl, and was tolerant to different organic solvents and surfactants. This is the first report of a halotolerant bifunctional ß-xylosidase/α-l-arabinofuranosidase from C. graminicola, and the enzyme showed attractive properties for application in lignocellulose hydrolysis, particularly under high salinity and/or in the presence of residues of pretreatment steps.


Assuntos
Colletotrichum/enzimologia , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Xilosidases/isolamento & purificação , Relação Dose-Resposta a Droga , Proteínas Fúngicas/química , Proteínas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Ponto Isoelétrico , Lignina/metabolismo , Peso Molecular , Estabilidade Proteica , Cloreto de Sódio/farmacologia , Solventes/farmacologia , Especificidade por Substrato , Tensoativos/farmacologia , Temperatura , Xilanos/metabolismo , Xilosidases/química , Xilosidases/efeitos dos fármacos , Xilosidases/metabolismo
3.
Appl Biochem Biotechnol ; 185(1): 316-333, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29150773

RESUMO

Enzyme reaction products and by-products from pretreatment steps can inhibit endoglucanases and are major factors limiting the efficiency of enzymatic lignocellulosic biomass hydrolysis. The gene encoding the endoglucanase from Scytalidium thermophilum (egst) was cloned and expressed as a soluble protein in Pichia pastoris GS115. The recombinant enzyme (Egst) was monomeric (66 kDa) and showed an estimated carbohydrate content of 53.3% (w/w). The optimum temperature and pH of catalysis were 60-70 °C and pH of 5.5, respectively. The enzyme was highly stable at pH 3.0-8.0 with a half-life in water of 100 min at 65 °C. The Egst presented good halotolerance, retaining 84.1 and 71.4% of the control activity in the presence of 0.5 and 2.0 mol L-1 NaCl, respectively. Hydrolysis of medium viscosity carboxymethylcellulose (CMC) by Egst was stimulated 1.77-, 1.84-, 1.64-, and 1.8-fold by dithiothreitol, ß-mercaptoethanol, cysteine, and manganese at 10, 10, 10, and 5 mmol L-1 concentration, respectively. The enzyme hydrolyzed CMC with maximal velocity and an apparent affinity constant of 432.10 ± 16.76 and 10.5 ± 2.53 mg mL-1, respectively. Furthermore, the Egst was tolerant to reaction products and able to act on pretreated fractions sugarcane bagasse demonstrating excellent properties for application in the hydrolysis of lignocellulosic biomass.


Assuntos
Ascomicetos , Proteínas Fúngicas , Expressão Gênica , Glicosídeo Hidrolases , Ascomicetos/enzimologia , Ascomicetos/genética , Estabilidade Enzimática , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
PLoS One ; 12(11): e0188254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145480

RESUMO

The activity of the GH1 ß-glucosidase from Humicola insolens (Bglhi) against p-nitrophenyl-ß-D-glucopyranoside (pNP-Glc) and cellobiose is enhanced 2-fold by glucose and/or xylose. Kinetic and transglycosylation data showed that hydrolysis is preferred in the absence of monosaccharides. Stimulation involves allosteric interactions, increased transglycosylation and competition of the substrate and monosaccharides for the -1 glycone and the +1/+2 aglycone binding sites. Protein directed evolution has been used to generate 6 mutants of Bglhi with altered stimulation patterns. All mutants contain one of three substitutions (N235S, D237V or H307Y) clustered around the +1/+2 aglycone binding sites. Two mutants with the H307Y substitution preferentially followed the transglycosylation route in the absence of xylose or glucose. The strong stimulation of their pNP-glucosidase and cellobiase activities was accompanied by increased transglycosylation and higher monosaccharide tolerance. The D237V mutation favoured hydrolysis over transglycosylation and the pNP-glucosidase activity, but not the cellobiase activity, was stimulated by xylose. The substitution N235S abolished the preference for hydrolysis or transglycosylation; the cellobiase, but not the pNP-glucosidase activity of the mutants was strongly inhibited by xylose. Both the D237V and N235S mutations lowered tolerance to the monosaccharides. These results provide evidence that the fine modulation of the activity of Bglhi and mutants by glucose and/or xylose is regulated by the relative affinities of the glycone and aglycone binding sites for the substrate and the free monosaccharides.


Assuntos
Glucose/metabolismo , Mycoplasma/enzimologia , Engenharia de Proteínas , Xilose/metabolismo , beta-Glucosidase/metabolismo , Celobiose/metabolismo , Glicosilação , Cinética , Mutagênese Sítio-Dirigida , Especificidade por Substrato , beta-Glucosidase/genética
5.
Appl Biochem Biotechnol ; 173(2): 391-408, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24627121

RESUMO

Humicola insolens produced a new ß-glucosidase (BglHi2) under solid-state fermentation. The purified enzyme showed apparent molecular masses of 116 kDa (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and 404 kDa (gel-filtration), suggesting that it is a homotetramer. Mass spectrometry analysis showed amino acid sequence similarity with a ß-glucosidase from Chaetomium thermophilum. Optima of pH and temperature were 5.0 and 65 °C, respectively, and the enzyme was stable for 60 min at 50 °C, maintaining 71 % residual activity after 60 min at 55 °C. BglHi2 hydrolyzed p-nitrophenyl-ß-D-glucopyranoside and cellobiose. Cellobiose hydrolysis occurred with high apparent affinity (K M = 0.24 ± 0.01 mmol L(-1)) and catalytic efficiency (k cat/K M = 1,304.92 ± 53.32 L mmol(-1) s(-1)). The activity was insensitive to Fe(+3), Cr(+2), Mn(+2), Co(+2), and Ni(2+), and 50-60 % residual activities were retained in the presence of Pb(2+), Hg(2+), and Cu(2+). Mixtures of pure BglHi2 or H. insolens crude extract (CE) with crude extracts from Trichoderma reesei fully hydrolyzed Whatman no. 1 paper. Mixtures of H. insolens CE with T. reesei CE or Celluclast 1.5 L fully hydrolyzed untreated printed office paper, napkin, and magazine papers after 24-48 h, and untreated cardboard was hydrolyzed by a H. insolens CE/T. reesei CE mixture with 100 % glucose yield. Data revealed the good potential of BglHi2 for the hydrolysis of waste papers, promising feedstocks for cellulosic ethanol production.


Assuntos
Carboidratos/química , Papel , Sordariales/enzimologia , Gerenciamento de Resíduos , beta-Glucosidase/metabolismo , Estabilidade Enzimática , Fermentação , Filtração , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metais/farmacologia , Peso Molecular , Especificidade por Substrato , Temperatura , beta-Glucosidase/química
6.
Folia Microbiol (Praha) ; 58(6): 561-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23564627

RESUMO

Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60-65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn(2+), dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.


Assuntos
Ascomicetos/enzimologia , Celobiose/metabolismo , Celulases/isolamento & purificação , Celulases/metabolismo , Inibidores Enzimáticos/metabolismo , Glucose/metabolismo , Celulases/química , Eletroforese em Gel de Poliacrilamida , Ativadores de Enzimas/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Espectrometria de Massas , Peso Molecular , Temperatura
7.
World J Microbiol Biotechnol ; 28(8): 2689-701, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22806195

RESUMO

Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of ß-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 ± 411.2 U g(-1), while ß-glucosidase production was increased about 2.6-fold, reaching 20.7 ± 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis ß-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for ß-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The ß-glucosidase maintained about 95 % of its activity after 26 h in water at 55 °C, with half-lives of 15.7 h at 60 °C and 5.1 h at 65 °C. The presence of xylose during heat treatment at 65 °C protected ß-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 °C. Xylose stimulated ß-glucosidase activity up to 1.7-fold, at 200 mmol L(-1). The notable features of both xylanase and ß-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.


Assuntos
Ascomicetos/enzimologia , Endo-1,4-beta-Xilanases/biossíntese , beta-Glucosidase/biossíntese , Biomassa , Celulase/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Xilose/farmacologia , beta-Glucosidase/metabolismo
8.
J Microbiol ; 49(5): 809-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22068499

RESUMO

The thermophilic fungus Malbranchea pulchella var. sulfurea produced good amounts of extracellular trehalase activity when grown for long periods on starch, maltose or glucose as the main carbon source. Studies with young cultures suggested that the main role of the extracellular acid trehalase is utilizing trehalose as a carbon source. The specific activity of the purified enzyme in the presence of manganese (680 U/mg protein) was comparable to that of other thermophilic fungi enzymes, but many times higher than the values reported for trehalases from other microbial sources. The apparent molecular mass of the native enzyme was estimated to be 104 kDa by gel filtration and 52 kDa by SDS-PAGE, suggesting that the enzyme was composed by two subunits. The carbohydrate content of the purified enzyme was estimated to be 19 % and the pi was 3.5. The optimum pH and temperature were 5.0-5.5 and 55° C, respectively. The purified enzyme was stimulated by manganese and inhibited by calcium ions, and insensitive to ATP and ADP, and 1 mM silver ions. The apparent K(M) values for trehalose hydrolysis by the purified enzyme in the absence and presence of manganese chloride were 2.70 ± 0.29 and 2.58 ± 0.13 mM, respectively. Manganese ions affected only the apparent V(max), increasing the catalytic efficiency value by 9.2-fold. The results reported herein indicate that Malbranchea pulchella produces a trehalase with mixed biochemical properties, different from the conventional acid and neutral enzymes and also from trehalases from other thermophilic fungi.


Assuntos
Onygenales/enzimologia , Trealase/isolamento & purificação , Trealase/metabolismo , Trealose/metabolismo , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Manganês/metabolismo , Peso Molecular , Subunidades Proteicas/química , Temperatura , Trealase/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-21616159

RESUMO

To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10days to salinities up to 21‰. Specific activity was highest in fresh water (26.5±2.1U mg(-1)), decreasing in 5‰ to 21‰, attaining 3-fold less at 15‰. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10‰, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21‰, maximum specific activity decreased 2.5- to 4-fold within 1 to 24h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24h and 2.4-fold after 1h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1h, remaining constant up to 120h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water.


Assuntos
Braquiúros/enzimologia , Braquiúros/fisiologia , Brânquias/enzimologia , Salinidade , ATPases Vacuolares Próton-Translocadoras/metabolismo , Adaptação Fisiológica , Animais , Água Doce , Concentração de Íons de Hidrogênio , Microssomos/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética
10.
J Exp Zool A Ecol Genet Physiol ; 313(8): 508-23, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20878750

RESUMO

To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+),K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (≈14 µm² membrane per µm³cytoplasm), deep invaginations that house the Na(+),K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 µm² µm⁻²)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 µm² µm⁻²), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+),K(+)-ATPase specific activity resembles marine crabs but is ≈5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two α-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4) (+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water.


Assuntos
Braquiúros/metabolismo , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Braquiúros/enzimologia , Braquiúros/ultraestrutura , Inibidores Enzimáticos/farmacologia , Epitélio/enzimologia , Epitélio/metabolismo , Epitélio/ultraestrutura , Água Doce , Brânquias/enzimologia , Brânquias/ultraestrutura , Transporte de Íons , Isoenzimas , Cinética , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
11.
J Microbiol ; 48(1): 53-62, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20221730

RESUMO

The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.


Assuntos
Ascomicetos/enzimologia , Celulose/metabolismo , Saccharum/microbiologia , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Celulases/farmacologia , Meios de Cultura , Sinergismo Farmacológico , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Proteínas Fúngicas/farmacologia , Glucose/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Micélio/metabolismo , Especificidade por Substrato , Trichoderma/enzimologia , beta-Glucosidase/química , beta-Glucosidase/farmacologia
12.
Biochem Mol Biol Educ ; 33(6): 399-403, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21638609

RESUMO

SigrafW is Windows-compatible software developed using the Microsoft® Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent dissociation constant (K). The estimation of V, K, and the sum of the squares of residuals is performed using a Wilkinson nonlinear regression at any Hill coefficient (n). In contrast to many currently available kinetic analysis programs, SigrafW shows several advantages for the determination of kinetic parameters of both hyperbolic and nonhyperbolic saturation curves. No initial estimates of the kinetic parameters are required, a measure of the goodness-of-the-fit for each calculation performed is provided, the nonlinear regression used for calculations eliminates the statistical bias inherent in linear transformations, and the software can be used for enzyme kinetic simulations either for educational or research purposes. Persons interested in receiving a free copy of the software should contact Dr. F. A. Leone.

13.
J Colloid Interface Sci ; 275(1): 123-30, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15158389

RESUMO

Rat osseous plate alkaline phosphatase, a glycosylphosphatidylinositol (GPI)-anchored phosphomonohydrolase, was immobilized on Langmuir-Blodgett (LB) films. Enzyme solubilization either with polyoxyethylene-9-lauryl ether or with a glycosylphosphatidylinositol-specific phospholipase C resulted in a GPI-anchor-containing and a GPI-anchor-depleted form, respectively. Both forms were adsorbed on dimyristoylphosphatidic acid LB films and restricted to the outermost layer. The surface density and enzyme activity were determined using a quartz crystal microbalance and p-nitrophenylphosphatase activity, respectively. The detergent-solubilized form was co-spread with dimyristoylphosphatidic acid on the air/water interface and transferred to solid supports, providing an enzyme maximum surface density of 530 ng/cm2. Maximal phosphohydrolytic activity, corresponding to 43% of that observed in homogeneous medium, was obtained at a surface density of 179 ng/cm2. The phospholipase C-solubilized form was adsorbed directly from solution, reaching a maximum surface density of 1541 ng/cm2, although the phosphomonohydrolase activity was 10 times lower than that obtained for the anchor-containing form. The combined analysis of surface density and enzymatic activity suggests that the alignment of the protein molecules on the LB lipid films induced by the glycosylphosphatidylinositol anchor facilitates the access of the substrate to the active site. This access is hampered by increasing enzyme surface densities and depends on a specific orientation of the adsorbed enzyme.


Assuntos
Fosfatase Alcalina/química , Enzimas Imobilizadas/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Fosfolipases Tipo C/química , Animais , Ratos
14.
J Exp Zool A Comp Exp Biol ; 301(1): 63-74, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14695689

RESUMO

The effect of NH4+ ions on (Na+,K+)-ATPase hydrolytic activity was examined in a gill microsomal fraction from M. olfersii. In the absence of NH4+ ions, K+ ions stimulated ATP hydrolysis, exhibiting cooperative kinetics (nH=0.8), to a maximal specific activity of V=556.1+/-22.2 nmol.min(-1).mg(-1) with K(0.5)=2.4+/-0.1 mmol.L(-1). No further stimulation by K+ ions was observed in the presence of 50 mmol.L(-1) NH4+ ions. ATP hydrolysis was also stimulated by NH4+ ions obeying Michaelian kinetics to a maximal specific activity of V=744.8+/-22.3 nmol.min(-1).mg(-1) and KM=8.4+/-0.2 mmol.L(-1). In the presence of 10 mmol.L(-1) K+ ions, ATP hydrolysis was synergistically stimulated by NH4+ ions to V=689.8+/-13.8 nmol.min(-1).mg(-1) and K(0.5)=6.6+/-0.1 mmol.L(-1), suggesting that NH4+ ions bind to different sites than K+ ions. PNPP hydrolysis was also stimulated cooperatively by K+ or NH4+ ions to maximal values of V= 235.5+/-11.8 nmol.min(-1).mg(-1) and V=234.8+/-7.0 nmol.min(-1).mg(-1), respectively. In contrast to ATP hydrolysis, K(+)-phosphatase activity was not synergistically stimulated by NH4+ and K+ ions. These data suggest that at high NH4+ ion concentrations, the (Na+, K+)-ATPase exposes a new site; the subsequent binding of NH4+ ions stimulates ATP hydrolysis to rates higher than those for K+ ions alone. This is the first demonstration that (Na+, K+)-ATPase activity in a freshwater shrimp gill is modulated by ammonium ions, independently of K+ ions, an effect that may constitute a fine-tuning mechanism of physiological relevance to osmoregulatory and excretory processes in palaemonid shrimps.


Assuntos
Brânquias/metabolismo , Palaemonidae/metabolismo , Compostos de Amônio Quaternário/farmacologia , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Brasil , Água Doce , Hidrólise/efeitos dos fármacos , Cinética , Ouabaína/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...