Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 1(2): 82-91, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213400

RESUMO

The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

2.
Cell Signal ; 23(6): 991-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21111812

RESUMO

Unperturbed mitosis is a prerequisite for the generation of two genetically identical daughter cells. Nucleolar-spindle associated protein (NuSAP) is an important mitotic regulator. The activity of NuSAP is essential for a variety of cellular events that occur during mitosis starting from spindle assembly to cytokinesis. In addition to playing crucial roles during mitosis, NuSAP has been in the spotlight recently due to different studies exhibiting its importance in embryogenesis and cancer. In this review, we have extensively mined the current literature and made connections between different studies involving NuSAP. Importantly, we have assembled data pertaining to NuSAP from several proteomic studies and analyzed it thoroughly. Our review focuses on the role of NuSAP in mitosis and cancer, and brings to light several unanswered questions regarding the regulation of NuSAP in mitosis and its role in carcinogenesis.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Neoplasias/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Transcrição Gênica
3.
Exp Cell Res ; 314(19): 3453-65, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18835386

RESUMO

RhoBTB proteins are atypical members of the Rho family of small GTPases. Two of the three RhoBTB proteins, RhoBTB1 and RhoBTB2, have been proposed as tumor suppressors and might function as adaptors of Cul3-dependent ubiquitin ligase complexes. Using yeast two-hybrid analysis and co-immunoprecipitation we show that all three RhoBTB proteins interact with Cul3. The interaction requires the N-terminal region of Cul3 and the first BTB domain of RhoBTB. RhoBTB3, the only RhoBTB with a prenylation motif, associates with vesicles that are frequently found in the vicinity of microtubules, suggesting a participation in some aspects of vesicle trafficking. We also show that RhoBTB2 and RhoBTB3 are capable of homo and heterodimerizing through the BTB domain region. The GTPase domain, which does not bind GTP, is able to interact with the BTB domain region, thus preventing proteasomal degradation of RhoBTB. This fits into a model in which an intramolecular interaction maintains RhoBTB in an inactive state, preventing the formation or the functionality of Cul3-dependent complexes. We also report a significantly decreased expression of RHOBTB and CUL3 genes in kidney and breast tumor samples and a very good correlation in the expression changes between RHOBTB and CUL3 that suggests that these genes are subject to a common inactivation mechanism in tumors.


Assuntos
Proteínas Culina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Culina/análise , Proteínas Culina/genética , Células HeLa , Homeostase , Humanos , Camundongos , Microscopia Confocal , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rho de Ligação ao GTP/análise , Proteínas rho de Ligação ao GTP/genética
4.
Virology ; 374(1): 82-99, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18221766

RESUMO

Cellular proteins containing BTB and kelch domains have been shown to function as adapters for the recruitment of substrates to cullin-3-based ubiquitin ligases. Poxviruses are the only family of viruses known to encode multiple BTB/kelch proteins, suggesting that poxviruses may modulate the ubiquitin pathway through interaction with cullin-3. Ectromelia virus encodes four BTB/kelch proteins and one BTB-only protein. Here we demonstrate that two of the ectromelia virus-encoded BTB/kelch proteins, EVM150 and EVM167, interacted with cullin-3. Similar to cellular BTB proteins, the BTB domain of EVM150 and EVM167 was necessary and sufficient for cullin-3 interaction. During infection, EVM150 and EVM167 localized to discrete cytoplasmic regions, which co-localized with cullin-3. Furthermore, EVM150 and EVM167 co-localized and interacted with conjugated ubiquitin, as demonstrated by confocal microscopy and co-immunoprecipitation. Our findings suggest that the ectromelia virus-encoded BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3 potentially functioning to recruit unidentified substrates for ubiquitination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Vírus da Ectromelia/fisiologia , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Fusão Gênica Artificial , Linhagem Celular , Citoplasma/química , Vírus da Ectromelia/genética , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Imunoprecipitação , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitina/metabolismo , Proteínas Virais/genética
5.
Methods Mol Biol ; 301: 37-46, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917624

RESUMO

Many eukaryotic proteins are regulated by the covalent attachment of ubiquitin or polyubiquitin chains. These include proteins involved in cell cycle control, tumor suppression, and many signaling pathways. Ubiquitination of proteins occurs through an enzymatic cascade of three discrete steps, which results in covalent attachment of ubiquitin to the substrate. The first two steps in this cascade involve the activating and conjugating enzymes, E1 and E2. The third and final step is performed by the E3 ubiquitin ligase. The ubiquitin ligase is responsible for two distinct activities: targeting specific substrates by bringing the substrate and activated ubiquitin together, as well as catalyzing the ligation of ubiquitin to the substrate. There are two main classes of E3 ligases, the HECT domain and the RING finger-containing ligases. RING finger-based ubiquitination utilizes RING-containing protein subunits, or proteins with intrinsic RING domains, to catalyze the formation of polyubiquitin chains. In this chapter we describe step by step protocols to assay for the activity of the RING finger-type of E3 ligase both in vitro and in vivo.


Assuntos
Domínio Catalítico , Proteínas Culina/análise , Ubiquitina/química , Motivos de Aminoácidos , Animais , Proteínas Culina/química , Humanos , Complexo de Endopeptidases do Proteassoma/química , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química
6.
Mol Cell Biol ; 25(1): 162-71, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15601839

RESUMO

The concentrations and functions of many eukaryotic proteins are regulated by the ubiquitin pathway, which consists of ubiquitin activation (E1), conjugation (E2), and ligation (E3). Cullins are a family of evolutionarily conserved proteins that assemble by far the largest family of E3 ligase complexes. Cullins, via a conserved C-terminal domain, bind with the RING finger protein Roc1 to recruit the catalytic function of E2. Via a distinct N-terminal domain, individual cullins bind to a protein motif present in multiple proteins to recruit specific substrates. Cullin 3 (Cul3), but not other cullins, binds directly with BTB domains to constitute a potentially large number of BTB-CUL3-ROC1 E3 ubiquitin ligases. Here we report that the human BTB-Kelch protein Keap1, a negative regulator of the antioxidative transcription factor Nrf2, binds to CUL3 and Nrf2 via its BTB and Kelch domains, respectively. The KEAP1-CUL3-ROC1 complex promoted NRF2 ubiquitination in vitro and knocking down Keap1 or CUL3 by short interfering RNA resulted in NRF2 protein accumulation in vivo. We suggest that Keap1 negatively regulates Nrf2 function in part by targeting Nrf2 for ubiquitination by the CUL3-ROC1 ligase and subsequent degradation by the proteasome. Blocking NRF2 degradation in cells expressing both KEAP1 and NRF2 by either inhibiting the proteasome activity or knocking down Cul3, resulted in NRF2 accumulation in the cytoplasm. These results may reconcile previously observed cytoplasmic sequestration of NRF2 by KEAP1 and suggest a possible regulatory step between KEAP1-NRF2 binding and NRF2 degradation.


Assuntos
Antioxidantes/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Regulação da Expressão Gênica , Proteínas/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica , Domínio Catalítico , Linhagem Celular , Citoplasma/metabolismo , Inativação Gênica , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 1 Associada a ECH Semelhante a Kelch , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Ubiquitina-Proteína Ligases/metabolismo
7.
Nat Cell Biol ; 5(11): 1001-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14528312

RESUMO

The concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1. Cul1 associates with one of many F-box proteins through Skp1 to assemble various SCF-Roc1 E3 ligases that each selectively ubiquitinate one or more specific substrates. Here, we show that Cul3, but not other cullins, binds directly to multiple BTB domains through a conserved amino-terminal domain. In vitro, Cul3 promoted ubiquitination of Caenorhabditis elegans MEI-1, a katanin-like protein whose degradation requires the function of both Cul3 and BTB protein MEL-26. We suggest that in vivo there exists a potentially large number of BCR3 (BTB-Cul3-Roc1) E3 ubiquitin ligases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Caenorhabditis elegans , Células Cultivadas
8.
Mol Cell ; 10(6): 1511-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12504025

RESUMO

Cullin proteins assemble a large number of RING E3 ubiquitin ligases and regulate various physiological processes. Covalent modification of cullins by the ubiquitin-like protein NEDD8 activates cullin ligases through an as yet undefined mechanism. We show here that p120(CAND1) selectively binds to unneddylated CUL1 and is dissociated by CUL1 neddylation. CAND1 formed a ternary complex with CUL1 and ROC1. CAND1 dissociated SKP1 from CUL1 and inhibited SCF ligase activity in vitro. Suppression of CAND1 in vivo increased the level of the CUL1-SKP1 complex. We suggest that by restricting SKP1-CUL1 interaction, CAND1 regulated the assembly of productive SCF ubiquitin ligases, allowing a common CUL1-ROC core to be utilized by a large number of SKP1-F box-substrate subcomplexes.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Proteínas de Ligação a DNA , Inibidores Enzimáticos/metabolismo , Proteínas F-Box , Peptídeo Sintases/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Genes myc , Humanos , Cinética , Ligases/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína NEDD8 , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Proteínas Ligases SKP Culina F-Box , Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 277(18): 15758-65, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11861641

RESUMO

Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Ligases/metabolismo , Enzimas de Conjugação de Ubiquitina , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ativação Enzimática , Biblioteca Gênica , Humanos , Ligases/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Transfecção , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...