Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 36(7): 1241-1251, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503963

RESUMO

In this paper, we describe Fourier-based wave-front sensors (WFSs) as linear integral operators, characterized by their kernel. In the first part, we derive the dependency of this quantity with respect to the WFS's optical parameters: pupil geometry, filtering mask, and tip/tilt modulation. In the second part, we focus the study on the special case of convolutional kernels. The assumptions required to be in such a regime are described. We then show that these convolutional kernels allow to drastically simplify the WFS model by summarizing its behavior in a concise and comprehensive quantity called the WFS impulse response. We explain in particular how it allows to compute the sensor's sensitivity with respect to spatial frequencies. Such an approach therefore provides a fast diagnostic tool to compare and optimize Fourier-based WFSs. In the third part, we develop the impact of the residual phases on the sensor's impulse response, and show that the convolutional model remains valid. Finally, a section dedicated to the pyramid WFS concludes this work and illustrates how the slope maps are easily handled by the convolutional model.

2.
J Opt Soc Am A Opt Image Sci Vis ; 35(8): 1330-1345, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110295

RESUMO

Tomographic wavefront reconstruction is the main computational bottleneck to realize real-time correction for turbulence-induced wavefront aberrations in future laser-assisted tomographic adaptive-optics (AO) systems for ground-based giant segmented mirror telescopes because of its unprecedented number of degrees of freedom, N, i.e., the number of measurements from wavefront sensors. In this paper, we provide an efficient implementation of the minimum-mean-square error (MMSE) tomographic wavefront reconstruction, which is mainly useful for some classes of AO systems not requiring multi-conjugation, such as laser-tomographic AO, multi-object AO, and ground-layer AO systems, but is also applicable to multi-conjugate AO systems. This work expands that by Conan [Proc. SPIE9148, 91480R (2014)PSISDG0277-786X10.1117/12.2054472] to the multi-wavefront tomographic case using natural and laser guide stars. The new implementation exploits the Toeplitz structure of covariance matrices used in an MMSE reconstructor, which leads to an overall O(N log N) real-time complexity compared with O(N2) of the original implementation using straight vector-matrix multiplication. We show that the Toeplitz-based algorithm leads to 60 nm rms wavefront error improvement for the European Extremely Large Telescope laser-tomography AO system over a well-known sparse-based tomographic reconstruction; however, the number of iterations required for suitable performance is still beyond what a real-time system can accommodate to keep up with the time-varying turbulence.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(10): 1877-1887, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036059

RESUMO

We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results presented in Correia and Teixeira [J. Opt. Soc. Am. A31, 2763 (2014)JOAOD60740-323210.1364/JOSAA.31.002763] to the closed-loop case with predictive controllers and generalize the analytical modeling of Rigaut et al. [Proc. SPIE3353, 1038 (1998)PSISDG0277-786X10.1117/12.321649], Flicker [Technical Report (W. M. Keck Observatory, 2007)], and Jolissaint [J. Eur. Opt. Soc.5, 10055 (2010)1990-257310.2971/jeos.2010.10055]. We follow closely the developments of Ellerbroek [J. Opt. Soc. Am. A22, 310 (2005)JOAOD60740-323210.1364/JOSAA.22.000310] and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors while minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that ∼60 nm rms error reduction can be achieved with the distributed Kalman filter embodying antialiasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few λ/D separations (∼1-5λ/D) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

4.
Opt Express ; 25(10): 11452-11465, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788711

RESUMO

The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

5.
Opt Express ; 23(21): 27134-44, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480374

RESUMO

The accurate calibration of the interaction matrix affects the performance of an adaptive optics system. In the case of high-order systems, when the number of mirror modes is worth a few thousands, the calibration strategy is critical to reach the maximum interaction matrix quality in the minimum time. This is all the more true for the future European Extremely Large Telescope. Here, we propose a novel calibration scheme, the Slope-Oriented Hadamard strategy. We then build a tractable interaction matrix quality criterion, and show that our method tends to optimize it. We demonstrate that for a given level of quality, the calibration time needed using the Slope-Oriented Hadamard method is seven times less than with a classical Hadamard scheme. These analytic and simulation results are confirmed experimentally on the SPHERE XAO system (SAXO).

6.
Nature ; 526(7572): 230-2, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450055

RESUMO

In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the ß Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.

7.
Opt Lett ; 40(15): 3528-31, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258349

RESUMO

We propose a new type of wave-front sensor (WFS) derived from the pyramid WFS (PWFS). This new WFS, called the flattened pyramid-WFS (FPWFS), has a reduced pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this Letter, this new WFS is compared to three existing WFSs, namely the PWFS, the modulated PWFS (MPWFS), and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range, and low-photon-flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations, but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.

8.
Appl Opt ; 54(34): 10163-76, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836674

RESUMO

Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

9.
Opt Express ; 22(17): 20894-913, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321291

RESUMO

We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).

10.
Opt Lett ; 39(10): 2835-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978215

RESUMO

We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Lentes , Dispositivos Ópticos , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
11.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A122-32, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045874

RESUMO

Adaptive optics (AO) systems have to correct tip-tilt (TT) disturbances down to a fraction of the diffraction-limited spot. This becomes a key issue for very or extremely large telescopes affected by mechanical vibration peaks or wind shake effects. Linear quadratic Gaussian (LQG) control achieves optimal TT correction when provided with the temporal model of the disturbance. We propose a nonsupervised identification procedure that does not require any auxiliary system or loop opening and validate it on synthetic profile as well as on experimental data.

12.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A201-15, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045881

RESUMO

Noise effects induced by laser guide star (LGS) elongation have to be considered globally in a multi-LGS tomographic reconstruction analysis. This allows a fine estimation of performance and the comparison of different launching options. We present a modal analysis of the wavefront error with Shack-Hartmann wavefront sensors based on quasi-analytical matrix formalism. Including spot elongation and the Rayleigh fratricide effect, edge launching produces similar performance to central launching and avoids the risk of possible underestimation of fratricide scatter. Performance improves slightly with an optimized centroid estimator and is not affected by a slight field-of-view truncation of the subapertures. Finally we discuss detector characteristics for a LGS Shack-Hartmann wavefront sensor.

13.
14.
Opt Lett ; 35(18): 3036-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20847770

RESUMO

We propose the linearized focal-plane technique (LIFT) and compare it to classical sensors, such as the quad-cell wavefront sensor (WFS), pyramid WFS, and Shack-Hartmann WFS. The number of modes sensed by LIFT can be tuned without any hardware modification nor degradation of low-order sensing performance. We derive an analytic model of the noise propagation law, which we validate on end-to-end simulations.

15.
J Opt Soc Am A Opt Image Sci Vis ; 27(3): 469-83, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20208937

RESUMO

HOMER, the new bench developed at ONERA devoted to wide field adaptive optics (WFAO) laboratory research, has allowed the first experimental validations of multi-conjugate adaptive optics (MCAO) and laser tomography adaptive optics (LTAO) concepts with a linear quadratic Gaussian (LQG) control approach. Results obtained in LTAO in closed loop show the significant gain in performance brought by LQG control, which allows tomographic reconstruction. We present a calibration and model identification strategy. Experimental results are shown to be consistent with end-to-end simulations. These results are very encouraging and demonstrate robustness of performance with respect to inevitable experimental uncertainties. They represent a first step for the study of very large telescope (VLT) and extremely large telescopes (ELT) instruments.

16.
J Opt Soc Am A Opt Image Sci Vis ; 26(6): 1326-34, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19488172

RESUMO

We propose a novel method for the efficient direct detection of exoplanets from the ground using angular differential imaging. The method combines images appropriately, then uses the combined images jointly in a maximum-likelihood framework to estimate the position and intensity of potential planets orbiting the observed star. It takes into account the mixture of photon and detector noises and a positivity constraint on the planet's intensity. A reasonable detection criterion is also proposed based on the computation of the noise propagation from the images to the estimated intensity of the potential planet. The implementation of this method is tested on simulated data that take into account static aberrations before and after the coronagraph, residual turbulence after adaptive optics correction, and noise.

17.
J Opt Soc Am A Opt Image Sci Vis ; 26(1): 219-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19109619

RESUMO

Several wide-field-of-view adaptive optics (WFAO) concepts such as multi-conjugate AO (MCAO), multi-object AO (MOAO), and ground-layer AO (GLAO) are currently being studied for the next generation of Extremely Large Telescopes (ELTs). All these concepts will use atmospheric tomography to reconstruct the turbulent-phase volume. In this paper, we explore different reconstruction algorithms and their fundamental limitations, conducting this analysis in the Fourier domain. This approach allows us to derive simple analytical formulations for the different configurations and brings a comprehensive view of WFAO limitations. We then investigate model and statistical errors and their effect on the phase reconstruction. Finally, we show some examples of different WFAO systems and their expected performance on a 42 m telescope case.

18.
Opt Express ; 16(1): 87-97, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18521135

RESUMO

We present a first experimental validation of vibration filtering with a Linear Quadratic Gaussian (LQG) control law in Adaptive Optics (AO). A quasi-pure mechanical vibration is generated on a classic AO bench and filtered by the control law, leading to an improvement of the Strehl Ratio and image stability. Vibration filtering may be applied to any AO system, but these results are of particular interest for eXtrem AO, and for instance for the SPHERE AO design, where high performance is required.


Assuntos
Filtração/métodos , Modelos Estatísticos , Óptica e Fotônica , Simulação por Computador , Laboratórios , Luz , Modelos Lineares , Distribuição Normal , Espalhamento de Radiação , Vibração
19.
J Opt Soc Am A Opt Image Sci Vis ; 24(8): 2334-46, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17621336

RESUMO

Noncommon path aberrations (NCPAs) are one of the main limitations of an extreme adaptive optics (AO) system. NCPAs prevent extreme AO systems from achieving their ultimate performance. These static aberrations are unseen by the wavefront sensor and therefore are not corrected in closed loop. We present experimental results validating what we believe to be new procedures of measurement and precompensation of the NCPAs on the AO bench at ONERA (Office National d'Etudes et de Recherches Aérospatiales). The measurement procedure is based on refined algorithms of phase diversity. The precompensation procedure makes use of a pseudo-closed-loop scheme to overcome the AO wavefront-sensor-model uncertainties. Strehl ratio obtained in the images reaches 98.7% at 632.8 nm. This result allows us to be confident of achieving the challenging performance required for direct observation of extrasolar planets.

20.
Opt Express ; 15(23): 15293-307, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19550815

RESUMO

We propose a new concept of pupil motion sensor for astronomical adaptive optics systems and present experimental results obtained during the first laboratory validation of this concept. Pupil motion is an important issue in the case of extreme adaptive optics, high contrast systems, such as the proposed Planet Finder instruments for the ESO and Gemini 8-meter telescopes. Such high contrast imaging instruments will definitively require pupil stabilization to minimize the effect of quasi-static aberrations. The concept for pupil stabilization we propose uses the flux information from the AO system wave-front sensor to drive in closed loop a pupil tip-tilt mirror located in a focal plane. A laboratory experiment validates this concept and demonstrates its interest for high contrast imaging instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...