Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(18): e2400388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38465502

RESUMO

Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Hidrogéis/química , Técnicas de Cocultura/métodos , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Células Endoteliais/citologia , Células Endoteliais/metabolismo
2.
Cancer Immunol Immunother ; 73(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231344

RESUMO

Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Medula Óssea , Interleucina-2 , Antígenos CD28 , Leucócitos Mononucleares , Leucemia Mieloide Aguda/terapia , Linfócitos T Citotóxicos , Células Clonais
3.
Adv Healthc Mater ; 12(14): e2201907, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36417691

RESUMO

Pancreatic cancer is a devastating malignancy with minimal treatment options. Standard-of-care therapy, including surgery and chemotherapy, is unsatisfactory, and therapies harnessing the immune system have been unsuccessful in clinical trials. Resistance to therapy and disease progression are mediated by the tumor microenvironment, which contains excessive amounts of extracellular matrix and stromal cells, acting as a barrier to drug delivery. There is a lack of preclinical pancreatic cancer models that reconstruct the extracellular, cellular, and biomechanical elements of tumor tissues to assess responses toward immunotherapy. To address this limitation and explore the effects of immunotherapy in combination with chemotherapy, a multicellular 3D cancer model using a star-shaped poly(ethylene glycol)-heparin hydrogel matrix is developed. Human pancreatic cancer cells, cancer-associated fibroblasts, and myeloid cells are grown encapsulated in hydrogels to mimic key components of tumor tissues, and cell responses toward treatment are assessed. Combining the CD11b agonist ADH-503 with anti-PD-1 immunotherapy and chemotherapy leads to a significant reduction in tumor cell viability, proliferation, metabolic activity, immunomodulation, and secretion of immunosuppressive and tumor growth-promoting cytokines.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Imunomodulação , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...