Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 70(2): 265-73, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15227671

RESUMO

Hexyl methacrylate (HMA), methyl methacrylate (MMA), and methacrylic acid (MAA) were used as comonomers to produce a low glass transition temperature material, potentially useful in fabricating a small diameter vascular graft. Because it has been shown that grafts seeded with endothelial cells have better resistance to thrombosis, RGD-based peptide sequences were incorporated into the terpolymer. The two methods used for incorporating peptide sequences were a chain transfer reaction during polymerization, and a coupling reaction between the amine terminus of the peptide and the carboxyl groups of the MAA. Polymers were synthesized using the chain transfer reaction with peptide concentrations ranging from 1.7 to 7.0 micromol/g. Weight-average molecular weights decreased with increasing peptide concentration from 310,000 g/mol for the terpolymer without peptide, to 110,000 g/mol for a peptide concentration of 7.0 micromol/g. As a result, Young's modulus decreased with increasing peptide concentration. Terpolymers with peptides attached through a coupling reaction showed no decrease in molecular weight or mechanical properties. Confocal microscopy showed cells seeded on the RGD surfaces adhered and spread, while terpolymers with RGE sequences showed cells that were rounded and not spreading. Cell density on RGD surfaces increased with increasing peptide concentration up to a bulk peptide concentration of approximately 5 micromol/g and reached a plateau, which indicated the minimum peptide concentration necessary for maximum cell adhesion.


Assuntos
Materiais Biocompatíveis , Endotélio Vascular/citologia , Oligopeptídeos , Ácidos Polimetacrílicos , Fenômenos Biomecânicos , Bioprótese , Prótese Vascular , Adesão Celular , Contagem de Células , Células Cultivadas , Humanos , Teste de Materiais , Propriedades de Superfície , Engenharia Tecidual
2.
Biomaterials ; 25(15): 2971-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14967529

RESUMO

The goal of this research was to design a biomaterial, using acrylic terpolymers, which could support endothelial cells and function in small diameter vascular graft applications. Hexyl methacrylate (HMA) and octyl methacrylate (OMA) were used as comonomers to produce a material with a low glass transition temperature (T(g)). Methacrylic acid (MAA) was used to provide ionic character, and methyl methacrylate (MMA) was selected because of its wide usage in biomedical applications. Cation neutralization was employed to modify the mechanical properties. RGD-based peptide sequences were attached to promote endothelial cell adhesion, because vascular grafts seeded with endothelial cells have fewer problems with thrombosis. The two methods used to incorporate peptide sequences were a chain transfer reaction during polymerization, and a coupling reaction attaching the peptides to carboxyl groups on the polymer after polymerization. The compositions that produced T(g)s of approximately 0 degrees C were 75 mol% OMA and 92 mol% HMA. The Young's modulus of the HMA copolymer was approximately 0.37 MPa, well below the desired value of 0.9 MPa. Likewise, the Young's modulus of approximately 0.50 MPa for the OMA copolymer was also below the desired value. After partial neutralization with sodium cations, the Young's moduli increased to approximately 0.93 and 0.99 MPa, respectively. The chain transfer reaction lowered the molecular weights and mechanical properties of the copolymers, while the coupling reaction method had little effect on these properties. The chain transfer method appears to be a promising one-step method to produce polymers with a wide range of peptide concentrations.


Assuntos
Materiais Biocompatíveis/química , Metacrilatos/química , Oligopeptídeos/química , Prótese Vascular , Elasticidade , Concentração de Íons de Hidrogênio , Teste de Materiais , Polímeros/química , Resistência à Tração , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Transplantes , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...