Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 612: 39-48, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28850851

RESUMO

This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration.

2.
Ecotoxicol Environ Saf ; 150: 40-48, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29268113

RESUMO

Fish are currently used for the assessment of chemical toxicity. The REACh regulation and the European directive on the protection of animals used for scientific purposes both recommend the use of methods other than animal testing. In view of this, fish cell lines are increasingly used to provide fast and reliable toxic and ecotoxic data on new chemicals. The sensitivity of the Rainbow trout liver cell line RTL-W1 and Japanese medaka embryos cell line OLCAB-e3 were used with different toxicity endpoints, namely cytotoxicity, EROD activity, ROS production and DNA damage for various classes of pollutants displaying different modes of action but also with complex environmental mixtures. Toxicity tests were coupled with chemical analysis to quantify the chemical concentrations in cell cultures. Differences in sensitivity were found between fish cell lines. MTT reduction assay revealed that OLCAB-e3 cells were more sensitive than RTL-W1 cells. On the contrary, RTL-W1 gave higher response levels for the Fpg-modified comet assay and ROS assay. The OLCAB-e3 cell line did not express EROD activity unlike RTL-W1. This study highlights the capacity of the two different fish cell lines to measure the toxicity of individual toxicants but also environmental mixtures. Then, results obtained here illustrate the interest of using different cell lines and toxicity endpoints to assess the toxicity of complex or unknown mixture of chemicals.


Assuntos
Misturas Complexas/toxicidade , Dano ao DNA , Oncorhynchus mykiss , Oryzias , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Oncorhynchus mykiss/fisiologia , Oryzias/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Chemosphere ; 193: 329-336, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29149708

RESUMO

Kinetics of photodegradation of novel oral anticoagulants dabigatran, rivaroxaban, and apixaban were studied under simulated solar light irradiation in purified, mineral, and river waters. Dabigatran and rivaroxaban underwent direct photolysis with polychromatic quantum yields of 2.2 × 10-4 and 4.4 × 10-2, respectively. The direct photodegradation of apixaban was not observed after 19 h of irradiation. Kinetics of degradation of rivaroxaban was not impacted by the nature of the aqueous matrix while photosensitization from nitrate ions was observed for dabigatran and apixaban dissolved in a mineral water. The photosensitized reactions were limited in the tested river water (Isle River, Périgueux, France) certainly due to the hydroxyl radical scavenging effect of the dissolved organic matter. The study of photoproduct structures allowed to identify two compounds for dabigatran. One of them is the 4-aminobenzamidine while the second one is a cyclization product. In the case of rivaroxaban, as studied by very high field NMR, only one photoproduct was observed i.e. a photoisomer. Finally, seven photoproducts were clearly identified from the degradation of apixaban under simulated solar light.


Assuntos
Anticoagulantes/efeitos da radiação , Água Doce/química , Fotólise/efeitos da radiação , Luz Solar , Benzamidinas , França , Radical Hidroxila , Cinética , Pirazóis , Piridonas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...