Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 236, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606815

RESUMO

Harnessing the effector mechanisms of the immune system to combat brain tumors with antigen specificity and memory has been in research and clinical testing for many years. Government grant mechanisms and non-profit organizations have supported many innovative projects and trials while biotech companies have invested in the development of needed tools, assays and novel clinical approaches. The National Brain Tumor Society and the Parker Institute for Cancer Immunotherapy partnered to host a workshop to share recent data, ideas and identify both hurdles and new opportunities for harnessing immunotherapy against pediatric and adult brain tumors. Adoptively transferred cell therapies have recently shown promising early clinical results. Local cell delivery to the brain, new antigen targets and innovative engineering approaches are poised for testing in a new generation of clinical trials. Although several such advances have been made, several obstacles remain for the successful application of immunotherapies for brain tumors, including the need for more representative animal models that can better foreshadow human trial outcomes. Tumor and tumor microenvironment biopsies with multiomic analysis are critical to understand mechanisms of response and patient stratification, yet brain tumors are especially challenging for such biopsy collection. These workshop proceedings and commentary shed light on the status of immunotherapy in pediatric and adult brain tumor patients, including current research as well as opportunities for improving future efforts to bring immunotherapy to the forefront in the management of brain tumors.


Assuntos
Neoplasias Encefálicas , Imunoterapia , Adulto , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Terapia Baseada em Transplante de Células e Tecidos , Criança , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral
2.
Drug Discov Today ; 26(7): 1744-1749, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781950

RESUMO

Development of curative treatments for glioblastoma (GBM) has been stagnant in recent decades largely because of significant financial risks. A portfolio-based strategy for the parallel discovery of breakthrough therapies can effectively reduce the financial risks of potentially transformative clinical trials for GBM. Using estimates from domain experts at the National Brain Tumor Society (NBTS), we analyze the performance of a portfolio of 20 assets being developed for GBM, diversified across different development phases and therapeutic mechanisms. We find that the portfolio generates a 14.9% expected annualized rate of return. By incorporating the adaptive trial platform GBM AGILE in our simulations, we show that at least one drug candidate in the portfolio will receive US Food and Drug Administration (FDA) approval with a probability of 79.0% in the next decade.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/economia , Obtenção de Fundos , Glioblastoma/tratamento farmacológico , Glioblastoma/economia , Simulação por Computador , Humanos , Modelos Teóricos
3.
Biochemistry ; 45(25): 7913-23, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16784244

RESUMO

Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From the multiple kinetic studies, most of the rate constants for the individual steps were either evaluated or estimated.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Adenosina Trifosfatases/metabolismo , Amidas/farmacologia , Carbazóis/farmacologia , Humanos , Alcaloides Indólicos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fosforilação , Conformação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Solventes , Especificidade por Substrato , Viscosidade , Quinases Associadas a rho
4.
J Biol Chem ; 280(14): 13728-34, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15657054

RESUMO

Pim-1 is an oncogene-encoded serine/threonine kinase primarily expressed in hematopoietic and germ cell lines. Pim-1 kinase was originally identified in Maloney murine leukemia virus-induced T-cell lymphomas and is associated with multiple cellular functions such as proliferation, survival, differentiation, apoptosis, and tumorigenesis (Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N. S. (2001) J. Vet. Sci. 2, 167-179). The crystal structures of Pim-1 complexed with staurosporine and adenosine were determined. Although a typical two-domain serine/threonine protein kinase fold is observed, the inter-domain hinge region is unusual in both sequence and conformation; a two-residue insertion causes the hinge to bulge away from the ATP-binding pocket, and a proline residue in the hinge removes a conserved main chain hydrogen bond donor. Without this hydrogen bond, van der Waals interactions with the hinge serve to position the ligand. The hinge region of Pim-1 resembles that of phosphatidylinositol 3-kinase more closely than it does other protein kinases. Although the phosphatidylinositol 3-kinase inhibitor LY294002 also inhibits Pim-1, the structure of the LY294002.Pim-1 complex reveals a new binding mode that may be general for Ser/Thr kinases.


Assuntos
Cromonas/metabolismo , Inibidores Enzimáticos/metabolismo , Morfolinas/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Adenosina/química , Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cromonas/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Morfolinas/química , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-pim-1 , Alinhamento de Sequência , Estaurosporina/química , Estaurosporina/metabolismo
5.
Biochim Biophys Acta ; 1594(1): 27-39, 2002 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11825606

RESUMO

The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.


Assuntos
IMP Desidrogenase/genética , Sítios de Ligação , Catálise , Hidrólise , IMP Desidrogenase/química , Inosina Monofosfato/química , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , NAD/química , Ribonucleotídeos/química , Xantina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...