Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 14: 1-14, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31011628

RESUMO

Oncolytic vaccinia viruses are currently in clinical development. However, the safety and the tumor selectivity of these oncolytic viruses must be improved. We previously constructed a first-generation oncolytic vaccinia virus by expressing the suicide gene FCU1 inserted in the J2R locus that encodes thymidine kinase. We demonstrated that the combination of this thymidine-kinase-deleted vaccinia virus and the FCU1/5-fluocytosine system is a potent vector for cancer therapy. Here, we developed a second generation of vaccinia virus, named TG6002, expressing FCU1 and with targeted deletions of the J2R gene and the I4L gene, which encodes the large subunit of the ribonucleotide reductase. Compared to the previously used single thymidine-kinase-deleted vaccinia virus, TG6002 is highly attenuated in normal cells, yet it displays tumor-selective replication and tumor cell killing. TG6002 replication is highly dependent on cellular ribonucleotide reductase levels and is less pathogenic than the single-deleted vaccinia virus. Tumor-selective viral replication, prolonged therapeutic levels of 5-fluorouracil in tumors, and significant antitumor effects were observed in multiple human xenograft tumor models after systemic injection of TG6002 and 5-fluorocytosine. TG6002 displays a convincing safety profile and is a promising candidate for treatment of cancer in humans.

2.
Cancer Res ; 65(20): 9536-46, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16230419

RESUMO

To redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity. An adeno-viral expression system was used to explore the biology of this "fusokine". Inclusion of the IL-18 prosequence (proIL-18) increases the expression, secretion, and potency of this fusokine. In vivo gene transfer experiments show that Ad-IL-2/proIL-18 dramatically outdoes Ad-IL-2, Ad-proIL-18, or the combination of both, by inducing high rates of tumor rejection in several murine models. Both innate and adaptive effector mechanisms are required for this antitumor activity.


Assuntos
Imunoterapia Ativa/métodos , Interleucina-18/imunologia , Interleucina-2/imunologia , Proteínas Recombinantes de Fusão/imunologia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Humanos , Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-18/biossíntese , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-2/biossíntese , Interleucina-2/genética , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2 , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia
3.
Cancer Gene Ther ; 12(2): 198-205, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15472713

RESUMO

Recent evidence has resurrected the concept of specialized populations of T lymphocytes that are able to suppress an antigen-specific immune response. T-regulatory cells (T-reg) have been characterized as CD4+ CD25+ T cells. Previous reports describing differential gene expression analysis have shown that the glucocorticoid-induced tumor necrosis family receptor family-related gene (GITR) is upregulated in these cells. Furthermore, antibodies specific for GITR have been shown to inhibit the T-suppressor function of CD4+ CD25+ T-reg. The ligands for both mouse and human GITR have been cloned recently. We have inserted the sequences for natural, membrane-bound GITR-ligand (GITR-L) and a truncated secreted form of GITR-L (GITR-Lsol) into the adenovirus-5 genome. Coculture experiments show that cells infected with Ad-GITR-L and supernatants from cells infected with Ad-GITR-Lsol can increase the proliferation of both CD4+ CD25- and CD8+ T cells in response to anti-CD3 stimulation, in the presence, as well as in the absence, of CD4+ CD25+ T cells. The virus constructs were injected into growing B16 melanoma tumors. Ad-GITR-L was shown to attract infiltration with both CD4+ and CD8+ T cells. Both constructs were shown to inhibit tumor growth.


Assuntos
Adenoviridae/genética , Antígenos CD4/análise , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Melanoma Experimental/terapia , Linfócitos T Reguladores/fisiologia , Animais , Antígenos CD28/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/uso terapêutico , Proliferação de Células , Técnicas de Cocultura , Feminino , Terapia de Imunossupressão , Ligantes , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos , Fatores de Necrose Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...