Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 7(10): 2134-42, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11411986

RESUMO

The oxidative addition of phenyl iodide to the palladium(o) generated from [Pd0(dba)2] and n equivalents of AsPh3 (the most efficient catalytic precursor in Stille reactions) proceeds from [(solv)Pd0(AsPh3)2] (solv= solvent). However, the latter is present only in trace concentrations because it is involved in an equilibrium with the major, but nonreactive, complex [Pd0(dba)(AsPh3)2]. As regards the phosphine ligands, dba has a decelerating effect on the rate of the oxidative addition by decreasing the concentration of the reactive species. Relative to PPh3, the effect of AsPh3 is to increase the rate of the oxidative addition of PhI by a factor ten in DMF and seven in THF, independent of the value of n, provided that n > or = 2. In contrast to PPh3, the addition of more than two equivalents of AsPh3 to [Pd0(dba)2] (dba= trans,trans-dibenzylideneacetone) does not affect the kinetics of the oxidative addition because of the very endergonic displacement of dba from [Pd0(dba)(AsPh3)2] to form [Pd0(AsPh3)3]. The complex trans-[PhPdI(AsPh3)2], formed in the oxidative addition, is involved in a slow equilibrium with the T-shaped complex [PhPdI(AsPh3)] after appreciable decomplexation of one AsPh3. Under catalytic conditions, that is, in the presence of a nucleophile, such as CH2=CH-SnBu3 which is able to coordinate to [Pd0(AsPh3)2], a new Pd0 complex is formed: [Pd0(eta2-CH2=CHSnBu3)(AsPh3)2]; however, this complex does not react with PhI. Consequently, CH2=CH-SnBu3 slows down the oxidative addition by decreasing the concentration of the reactive species [(solv)Pd0(AsPh3)2]. This demonstrates that a nucleophile may be not only involved in the transmetallation step, but may also interfere in the kinetics of the oxidative addition step by decreasing the concentration of reactive Pd0.

2.
Chemistry ; 6(8): 1474-82, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10840970

RESUMO

The major complex formed in solution from [[Pd0(dba)2]+1P-N] mixtures is [Pd0(dba)(P-N)] (dba=trans,trans-dibenzylideneacetone; P-N=PhPN, 1-dimethylamino-2-diphenylphosphinobenzene; FcPN, N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]methylamine; OxaPN, 4,4'-dimethyl-2-(2-diphenylphosphinophenyl)-1,3-oxazoline). Each complex consists of a mixture of isomers involved in equilibria: two 16-electron rotamer complexes [Pd0(eta2-dba)(eta2-P-N)] and one 14-electron complex [Pd0(eta2-dba)(eta1-P-N)] observed for FcPN and OxaPN. [Pd0(dba)(PhPN)] and [SPd0(PhPN)] (S solvent) react with PhI in an oxidative addition: [SPd0(PhPN)] is intrinsically more reactive than [Pd0(dba)(PhPN)]. This behavior is similar to that of the bidentate bis-phosphane ligands. When the PhPN ligand is present in excess, it behaves as a monodentate phosphane ligand, since [Pd0(eta2-dba)(eta1-PhPN)2] is formed first by preferential cleavage of the Pd-N bond instead of the Pd olefin bond. [Pd0(eta1-PhPN)3] is also eventually formed. [Pd0(dba)(FcPN)] and [Pd0(dba)(OxaPN)] are formed whatever the excess of ligand used. [SPd0(FcPN)] and [SPd0)(OxaPN)] are not involved in the oxidative addition. The 16-electron complexes [Pd0(eta2-dba)(eta2-FcPN)] and [Pd0(eta2-dba)(eta2-OxaPN)] are found to react with PhI via a 14-electron complex as has been established for [Pd0(eta2-dba)(eta1-OxaPN)]. Once again, the cleavage of the Pd-N bond is favored over that of Pd-olefin bond. This work demonstrates the higher affinity for [Pd0(P-N)] of dba compared with the P-N ligand, and emphasizes once more the important role of dba, which either controls the concentration of the most reactive complex, [SPd0(PhPN)], or is present in the reactive complexes, [Pd0(dba)(FcPN)] or [Pd0(dba)(OxaPN)], and thus contributes to their intrinsic reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA