Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 98(5): 1239-1255, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28122124

RESUMO

Understanding functional trait-environment relationships (TERs) may improve predictions of community assembly. However, many empirical TERs have been weak or lacking conceptual foundation. TERs based on leaf venation networks may better link individuals and communities via hydraulic constraints. We report measurements of vein density, vein radius, and leaf thickness for more than 100 dominant species occurring in ten forest communities spanning a 3,300 m Andes-Amazon elevation gradient in Peru. We use these data to measure the strength of TERs at community scale and to determine whether observed TERs are similar to those predicted by physiological theory. We found strong support for TERs between all traits and temperature, as well weaker support for a predicted TER between maximum abundance-weighted leaf transpiration rate and maximum potential evapotranspiration. These results provide one approach for developing a more mechanistic trait-based community assembly theory.


Assuntos
Florestas , Fenótipo , Plantas/anatomia & histologia , Peru , Folhas de Planta , Plantas/classificação
2.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974517

RESUMO

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Assuntos
Florestas , Filogenia , Árvores/classificação , Clima Tropical , Evolução Biológica , Ecologia , América do Sul
3.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3316-29, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22006971

RESUMO

The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.


Assuntos
Carbono/química , Modelos Biológicos , Fotossíntese , Folhas de Planta/química , Árvores/química , Atmosfera/química , Brasil , Dióxido de Carbono/química , Simulação por Computador , Nitrogênio/química , Fósforo/química , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Solo/química , Árvores/crescimento & desenvolvimento , Clima Tropical , Madeira/química , Madeira/crescimento & desenvolvimento
4.
New Phytol ; 187(3): 631-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659252

RESUMO

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA