Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(9): e10538, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720059

RESUMO

Hybridization is a natural process whereby two diverging evolutionary lineages reproduce and create offspring of mixed ancestry. Differences in mating systems (e.g., self-fertilization and outcrossing) are expected to affect the direction and extent of hybridization and introgression in hybrid zones. Among other factors, selfers and outcrossers are expected to differ in their mutation loads. This has been studied both theoretically and empirically; however, conflicting predictions have been made on the effects mutation loads of parental species with different mating systems can have on the genomic composition of hybrids. Here, we develop a multi-locus, selective model to study how the different mutation load built up in selfers and outcrossers as a result of selective interference and homozygosity impact the long-term genetic composition of hybrid populations. Notably, our results emphasize that genes from the parental population with lesser mutation load get rapidly overrepresented in hybrid genomes, regardless of the hybrids own mating system. When recombination tends to be more important than mutation, outcrossers' genomes tend to be of higher quality and prevail. When recombination rates are low, however, selfers' genomes may reach higher quality than outcrossers' genomes and prevail in the hybrids. Taken together, these results provide concrete insights into one of the multiple factors influencing hybrid genome ancestry and introgression patterns in hybrid zones containing species with different mating systems.

2.
Evolution ; 77(10): 2186-2199, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37459230

RESUMO

Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology's most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species' genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids' reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg's genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm's pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.


Assuntos
Reprodução Assexuada , Sêmen , Masculino , Humanos , Reprodução , Hibridização Genética , Fenótipo
3.
Theor Popul Biol ; 153: 69-90, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451508

RESUMO

Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome's average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination, ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes where they are found. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evolutionary model of the interaction among sequence-specific gene conversion, fertility selection, and recurrent mutation. We find that allelic frequencies oscillate leading to stable limit cycles. From a biological perspective this means that when fertility selection is weaker than gene conversion, it cannot stop individual hotspots from dying but can save them from extinction by driving their re-activation (resuscitation). In our model, mutation balances death and resuscitation of hotspots, thus maintaining their number over evolutionary time. Interestingly, we find that multiple alleles result in oscillations that are chaotic and multiple targets in oscillations that are asynchronous between targets thus helping to maintain the average genomic recombination probability constant. Furthermore, we find that the level of expression of PRDM9 should control for the fraction of targets that are hotspots and the overall temperature of the genome. Therefore, our co-evolutionary model improves our understanding of how hotspots may be replaced, thus contributing to solve the Recombination Hotspot Paradox. From a more applied perspective our work provides testable predictions regarding the relation between mutation probability and fertility selection with life expectancy of hotspots.


Assuntos
Conversão Gênica , Recombinação Genética , Humanos , Animais , Mutação , Frequência do Gene , Modelos Genéticos , Histona-Lisina N-Metiltransferase/genética
4.
Curr Biol ; 30(15): 3001-3006.e5, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32559446

RESUMO

In many species, the Y (or W) sex chromosome is degenerate. Current theory proposes that this degeneration follows the arrest of recombination and results from the accumulation of deleterious mutations due to selective interference-the inefficacy of natural selection on non-recombining genomic regions. This theory requires very few assumptions, but it does not robustly predict fast erosion of the Y (or W) in large populations or the stepwise degeneration of several small non-recombining strata. We propose a new mechanism for Y/W erosion that works over faster timescales, in large populations, and for small non-recombining regions (down to a single sex-linked gene). The mechanism is based on the instability and divergence of cis-regulatory sequences in non-recombining genome regions, which become selectively haploidized to mask deleterious mutations on coding sequences. This haploidization is asymmetric, because cis-regulators on the X cannot be silenced (otherwise there would be no expression in females). This process causes rapid Y/W degeneration and simultaneous evolution of dosage compensation, provided that autosomal trans-regulatory sequences with sex-limited effects are available to compensate for cis-regulatory divergence. Although this "degeneration by regulatory evolution" does not require selective interference, both processes may act in concert to further accelerate Y degeneration.


Assuntos
Evolução Molecular , Cromossomos Sexuais/genética , Cromossomos Sexuais/metabolismo , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Genoma/genética , Masculino , Seleção Genética/genética
5.
Evolution ; 72(3): 426-439, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29331019

RESUMO

With the advent of new sequencing technologies, the evolution of gene expression is becoming a subject of intensive genomic research, with sparking debates upon the role played by these kinds of changes in adaptive evolution and speciation. In this article, we model expression evolution in species differing by their reproductive systems. We consider different rates of sexual versus asexual reproduction and the different type of parthenogenesis (apomixis and the various modes of automixis). We show that competition for expression leads to two selective processes on cis-regulatory regions that act independently to organism-level adaptation. Coevolution within regulatory networks allows these processes to occur without strongly modifying expression levels. First, cis-regulatory regions such as enhancers evolve in a runaway fashion because they automatically become associated to chromosomes purged from deleterious mutations ("Enhancer Runaway process"). Second, in clonal or nearly clonal species, homologous cis-regulatory regions tend to diverge, which leads to haploidization of expression, when they are sufficiently isolated from one another ("Enhancer Divergence process"). We show how these two processes cooccur and vary depending on the level of outcrossing, gene conversion, mitotic recombination, or recombination in automictic species. This study offers thus a baseline to understand patterns of expression evolution across the diversity of eukaryotic species.


Assuntos
Adaptação Biológica , Regulação da Expressão Gênica , Modelos Genéticos , Reprodução Assexuada/genética , Apomixia/genética , Evolução Biológica , Partenogênese/genética
6.
PLoS Genet ; 11(11): e1005665, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26561855

RESUMO

Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Modelos Teóricos , Seleção Genética/genética , Alelos , Animais , Diploide , Regulação da Expressão Gênica , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...