Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 13(7): e1005639, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715411

RESUMO

The Gram-negative bacterium Bordetella pertussis is the causative agent of whooping cough, a serious respiratory infection causing hundreds of thousands of deaths annually worldwide. There are effective vaccines, but their production requires growing large quantities of B. pertussis. Unfortunately, B. pertussis has relatively slow growth in culture, with low biomass yields and variable growth characteristics. B. pertussis also requires a relatively expensive growth medium. We present a new, curated flux balance analysis-based model of B. pertussis metabolism. We enhance the model with an experimentally-determined biomass objective function, and we perform extensive manual curation. We test the model's predictions with a genome-wide screen for essential genes using a transposon-directed insertional sequencing (TraDIS) approach. We test its predictions of growth for different carbon sources in the medium. The model predicts essentiality with an accuracy of 83% and correctly predicts improvements in growth under increased glutamate:fumarate ratios. We provide the model in SBML format, along with gene essentiality predictions.


Assuntos
Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Genoma Bacteriano/genética , Modelos Biológicos , Fumaratos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Análise do Fluxo Metabólico , Curva ROC , Coqueluche/microbiologia
2.
PLoS Comput Biol ; 9(6): e1003105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818840

RESUMO

The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer information about host contact networks from pathogen phylogenies, because in shaping a pathogen's opportunities for reproduction, contact networks also shape pathogen evolution. Host networks influence pathogen phylogenies both directly, through governing opportunities for evolution, and indirectly by changing the prevalence and incidence. Here, we aim to separate these two effects by comparing pathogen evolution on different host networks that share similar epidemic trajectories. This approach allows use to examine the direct effects of network structure on pathogen phylogenies, largely controlling for confounding differences arising from population dynamics. We find that networks with more heterogeneous degree distributions yield pathogen phylogenies with more variable cluster numbers, smaller mean cluster sizes, shorter mean branch lengths, and somewhat higher tree imbalance than networks with relatively homogeneous degree distributions. However, in particular for dynamic networks, we find that these direct effects are relatively modest. These findings suggest that the role of the epidemic trajectory, the dynamics of the network and the inherent variability of metrics such as cluster size must each be taken into account when trying to use pathogen phylogenies to understand characteristics about the underlying host contact network.


Assuntos
Microbiota , Filogenia , Evolução Biológica , Análise por Conglomerados
3.
PLoS One ; 5(12): e14243, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21170383

RESUMO

BACKGROUND: A trend towards automation of scientific research has recently resulted in what has been termed "data-driven inquiry" in various disciplines, including physics and biology. The automation of many tasks has been identified as a possible future also for the humanities and the social sciences, particularly in those disciplines concerned with the analysis of text, due to the recent availability of millions of books and news articles in digital format. In the social sciences, the analysis of news media is done largely by hand and in a hypothesis-driven fashion: the scholar needs to formulate a very specific assumption about the patterns that might be in the data, and then set out to verify if they are present or not. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report what we think is the first large scale content-analysis of cross-linguistic text in the social sciences, by using various artificial intelligence techniques. We analyse 1.3 M news articles in 22 languages detecting a clear structure in the choice of stories covered by the various outlets. This is significantly affected by objective national, geographic, economic and cultural relations among outlets and countries, e.g., outlets from countries sharing strong economic ties are more likely to cover the same stories. We also show that the deviation from average content is significantly correlated with membership to the eurozone, as well as with the year of accession to the EU. CONCLUSIONS/SIGNIFICANCE: While independently making a multitude of small editorial decisions, the leading media of the 27 EU countries, over a period of six months, shaped the contents of the EU mediasphere in a way that reflects its deep geographic, economic and cultural relations. Detecting these subtle signals in a statistically rigorous way would be out of the reach of traditional methods. This analysis demonstrates the power of the available methods for significant automation of media content analysis.


Assuntos
Cultura , Coleta de Dados , Meios de Comunicação de Massa , Automação , Livros , União Europeia , Humanos , Pesquisa , Ciências Sociais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...