Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3010, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589348

RESUMO

Single-ion anisotropy is vital for the observation of Single-Molecule Magnet (SMM) properties (i.e., a slow dynamics of the magnetization) in lanthanide-based systems. In the case of europium, the occurrence of this phenomenon has been inhibited by the spin and orbital quantum numbers that give way to J = 0 in the trivalent state and the half-filled population of the 4f orbitals in the divalent state. Herein, by optimizing the local crystal field of a quasi-linear bis(silylamido) EuII complex, the [EuII(N{SiMePh2}2)2] SMM is described, providing an example of a europium complex exhibiting slow relaxation of its magnetization. This behavior is dominated by a thermally activated (Orbach-like) mechanism, with an effective energy barrier of approximately 8 K, determined by bulk magnetometry and electron paramagnetic resonance. Ab initio calculations confirm second-order spin-orbit coupling effects lead to non-negligible axial magnetic anisotropy, splitting the ground state multiplet into four Kramers doublets, thereby allowing for the observation of an Orbach-like relaxation at low temperatures.

2.
Nat Commun ; 15(1): 3498, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664382

RESUMO

Molecular systems known as single-molecule magnets (SMMs) exhibit magnet-like behaviour of slow relaxation of the magnetisation and magnetic hysteresis and have potential application in high-density memory storage or quantum computing. Often, their intrinsic magnetic properties are plagued by low-energy molecular vibrations that lead to phonon-induced relaxation processes, however, there is no straightforward synthetic approach for molecular systems that would lead to a small amount of low-energy vibrations and low phonon density of states at the spin-resonance energies. In this work, we apply knowledge accumulated over the last decade in molecular magnetism to nanoparticles, incorporating Er3+ ions in an ultrasmall sub-3 nm diamagnetic NaYF4 nanoparticle (NP) and probing the slow relaxation dynamics intrinsic to the Er3+ ion. Furthermore, by increasing the doping concentration, we also investigate the role of intraparticle interactions within the NP. The knowledge gained from this study is anticipated to enable better design of magnetically high-performance molecular and bulk magnets for a wide variety of applications, such as molecular electronics.

3.
Chem Commun (Camb) ; 59(94): 13970-13973, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937393

RESUMO

Reaction of the 1,2,4,5-tetrazine (tz˙-) radical and {Cp*2Tb}+ has yielded a tetranuclear radical-bridged TbIII single-molecule magnet. The strong Ln-radical coupling and the electronic differences of the TbIII ions in [(Cp*2Tb)4(tz˙-)4]·3C6H6 (1) are probed via magnetic, magneto-optical and computational studies.

4.
ACS Appl Mater Interfaces ; 15(37): 44137-44146, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695985

RESUMO

Composition control is a powerful tool for obtaining high-performance lanthanide (Ln) luminescent materials with adjustable optical outputs. This strategy is well-established for hierarchically structured nanoparticles, but it is rarely applied to molecular compounds due to the limited number of metal centers within a single unit. In this work, we present a series of molecular cluster-aggregates (MCAs) with an icosanuclear core {Ln2Eu2Tb16} (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, and Yb) in which we explore composition control, akin to nanoparticles, to modulate the optical output. More specifically, we target to understand how the presence of a third LnIII doping ion would impact the well-known TbIII → EuIII energy transfer and the ratiometric optical thermometry performance based on the TbIII/EuIII pair. Photophysical properties at room and at varying temperatures were investigated. Based on experimental data and well-established intrinsic features, such as spin-orbit coupling strength and LnIII 4f energy levels' structure, we discuss the possible luminescent processes present in each MCA and provide insight into qualitative trends that can be rationally correlated throughout the series.

5.
Inorg Chem ; 62(17): 6808-6816, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125414

RESUMO

TbIII and EuIII systems have been investigated as ratiometric luminescent temperature probes in luminescent coordination polymers due to TbIII → EuIII energy transfer (ET). To help understand how ion-ion separation, chain conformation as well as excitation channel impact their thermometric properties, herein, [Eu(tfaa)3(µ-L)Tb(tfaa)3]n one-dimensional (1D) coordination polymers (tfaa- = trifluoroacetylacetonate, and L = [(diphenylphosphoryl)R](diphenyl)phosphine oxide, R = ethyl - dppeo - or butyl - dppbo) were synthesized. The short µ-dppeo bridge ligand leads to a more linear 1D polymeric chain, while the longer µ-dppbo bridge leads to tighter packed chains. As the temperature rises from 80 K, upon direct TbIII excitation at 488 nm, the TbIII emission intensity decreases, while the EuIII emission intensity increases after 160 and 200 K when L = dppeo or dppbo, respectively. The temperature-dependent emission intensities, due to TbIII → EuIII ET, enable the development of ratiometric luminescent temperature probes featuring maximum relative thermal sensitivity up to 3.8% K-1 (250 K, L = dppbo, excitation at 488 nm). On the other hand, the same system displays maximum thermal sensitivity up to 3.5% K-1 (323 K) upon ligand excitation at 300 nm. Thus, by changing the excitation channel and bridge ligand that leads to modification of the polymer conformations, the maximum relative thermal sensitivity can be tuned.

6.
Nat Chem ; 15(8): 1100-1107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37231297

RESUMO

The best-performing single-molecule magnets (SMMs) have historically relied on pseudoaxial ligands delocalized across several coordinated atoms. This coordination environment has been found to elicit strong magnetic anisotropy, but lanthanide-based SMMs with low coordination numbers have remained synthetically elusive species. Here we report a cationic 4f complex bearing only two bis-silylamide ligands, Yb(III)[{N(SiMePh2)2}2][Al{OC(CF3)3}4], which exhibits slow relaxation of its magnetization. The combination of the bulky silylamide ligands and weakly coordinating [Al{OC(CF3)3}4]- anion provides a sterically hindered environment that suitably stabilizes the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy. The resolution of the mJ states by luminescence spectroscopy is supported by ab initio calculations, which show a large ground-state splitting of approximately 1,850 cm-1. These results provide a facile route to access a bis-silylamido Yb(III) complex, and further underline the desirability of axially coordinated ligands with well-localized charges for high-performing SMMs.

7.
Nanoscale ; 14(27): 9675-9680, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35775625

RESUMO

Upconversion (UC) is a fascinating process in which higher energy photons can be emitted from excitation by lower energy photons. The current challenge remains in downscaling and effectively achieving upconversion with lanthanide ions at the molecular scale. Here, using a rationally designed molecular cluster-aggregate (MCA), we demonstrate for the first time HoIII ion molecular upconversion. The synthesized MCA exhibits identifiable HoIII green and red UC emissions with a uniquely enhanced red to green ratio as well as a conventional near-infrared (NIR) emission. A combined rigid spherical cluster core with reduced molecular vibrations, ideally matched donor and acceptor excited levels via a phonon-assisted mechanism, led to an upconversion quantum yield of 5.24 × 10-6%.

8.
Angew Chem Int Ed Engl ; 61(29): e202204839, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35561123

RESUMO

Photon upconversion (UC) in molecular species remains a highly sought-after property with vast potential applications in many fields. Until now, a few reports on molecular upconverters are limited to demonstrating upconversion. The low UC quantum yields (QY) and nuclearities hindered the application capabilities for molecular upconverters. To overcome these limitations, we report the use of a molecular cluster-aggregate (MCA) containing 20 lanthanide ions to target YbIII -TbIII -based cooperative UC. Upconversion quantum yield value of 1.04×10-4 %, among the highest value observed for a molecular cooperative UC, was attained for the {Gd11 Tb2 Yb7 } composition. Substitution of GdIII ions for EuIII centers opens a YbIII →TbIII →EuIII energy-transfer pathway, allowing the first proof-of-concept of potential application for molecular UC. This report on upconversion-based luminescence thermometry in a molecular species endorses further development of upconversion properties of nanoscale MCAs.


Assuntos
Elementos da Série dos Lantanídeos , Termometria , Transferência de Energia , Luminescência
9.
J Am Chem Soc ; 144(2): 912-921, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989573

RESUMO

Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic 5d → 4f emission of divalent lanthanide ions such as EuII allows for tunability of the emissive properties via modulation of the coordination environment. We report the synthesis and photoluminescence investigation of pentamethylcyclopentadienyleuropium(II) tetrahydroborate bis(tetrahydrofuran) dimer (1), the first example of an organometallic, discrete molecular EuII band-shift luminescence thermometer. Complex 1 exhibits an absolute sensitivity of 8.2 cm-1 K-1 at 320 K, the highest thus far observed for a lanthanide-based band-shift thermometer. Opto-structural correlation via variable-temperature single-crystal X-ray diffraction and fluorescence spectroscopy allows rationalization of the remarkable thermometric luminescence of complex 1 and reveals the significant potential of molecular EuII compounds in luminescence thermometry.

10.
ACS Appl Mater Interfaces ; 13(39): 47052-47060, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559510

RESUMO

Modulating the optical property of a material via structural modification is a powerful tool for obtaining the desired optical output. If a material can be tuned inside (core) and outside (outer shell), then the degree of control is greater toward application. Herein, we present a lanthanide-based nanosized molecular cluster aggregate (MCA) that allows fine-tuning of the inner core via composition control akin to nanoparticles. At the same time, the tunable outer shell enables light-harvesting properties similar to molecular systems. As such {Eu4Tb16}, {Eu3Gd5Tb12}, {Eu2Gd10Tb8}, and {Eu1Gd15Tb4} compositions were synthesized, and their photophysical properties were investigated in solution and in the solid state. Controlling the composition and spacing of the emitter ions with the optically silent GdIII ions results in a decrease in the TbIII → EuIII energy-transfer process efficiency. Consequently, ratiometric luminescence thermometry performance is fine-tuned to reach a maximum relative sensitivity of 4.17% °C-1 at 36 °C for the {Eu4Tb16} MCA. This study demonstrates that the optical properties are intrinsic to individual MCA species rather than a collective intermolecular effect. The color change observed close to room temperature for {Eu2Gd10Tb8} suggests potential applications such as multistage anticounterfeiting technology.

11.
Angew Chem Int Ed Engl ; 60(45): 24206-24213, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427984

RESUMO

Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.

12.
Chem Commun (Camb) ; 57(63): 7818-7821, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34278395

RESUMO

Tapping into the secondary coordination environment of mononuclear DyIII-complexes leads to drastic changes in luminescence and magnetism. Visualization of effects induced by stereoelectronics on the opto-magnetic properties was achieved through subtle modifications in the ligand framework.


Assuntos
Complexos de Coordenação/química , Disprósio/química , Campos Magnéticos , Estrutura Molecular , Imagem Óptica , Estereoisomerismo
13.
ACS Nano ; 15(3): 5580-5585, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33646745

RESUMO

The successive absorption of low-energy photons to the accumulation of the intermediate excited states leading to higher energy emission is still a challenge in molecular architectures. Contrary to low-phonon solids and nanoparticles, the rational construction of molecular systems containing an excess of donor atoms in relation to acceptor ones is far from trivial. Moreover, the vibrations caused by high-energy oscillators commonly present on coordination compounds result in serious drawbacks on molecular upconversion. To overcome these limitations, we demonstrate that upconversion can be achieved even at room temperatures through the use of molecular cluster-aggregates (MCAs). To achieve the upconverted emission, we synthesized a MCA containing 15 lanthanide ions, {Er2Yb13}, ensuring an excess of donor atoms. With the excitation on the ytterbium ion, the characteristic green and red emissions from erbium were obtained at room temperature. To prove the mechanism behind the upconversion process, four other compositions were synthesized and studied, namely, {Y13Er2}, {Y10Er5}, {Er10Yb5}, and {Y10Er1Yb4}. Upconversion quantum yield values on the order of 10-3% were obtained, values 100000 times higher than for previously reported lanthanide-based molecular upconverting systems. The presented methodology is an interesting approach to address a fine composition control and harness the upconversion properties of nanoscale molecular materials.

14.
Angew Chem Int Ed Engl ; 60(11): 6130-6136, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296546

RESUMO

Counterfeit goods represent a major problem to companies, governments, and customers, affecting the global economy. In order to protect the authenticity of products and documents, optical anti-counterfeit technologies have widely been employed via the use of discrete molecular species, extended metal-organic frameworks (MOFs), and nanoparticles. Herein, for the first time we demonstrate the potential use of molecular cluster-aggregates (MCA) as optical barcodes via composition and energy transfer control. The tuneable optical properties for the [Ln20 (chp)30 (CO3 )12 (NO3 )6 (H2 O)6 ], where chp- =deprotonated 6-chloro-2-pyridinol, allow the fine control of the emission colour output, resulting in high-security level optical labelling with a precise read-out. Moreover, a unique tri-doped composition of GdIII , TbIII , and EuIII led to MCAs with white-light emission. The presented methodology is a unique approach to probe the effect of composition control on the luminescent properties of nanosized molecular material.

15.
Inorg Chem ; 59(15): 11061-11070, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678587

RESUMO

Amidine-based ligand frameworks were employed to isolate a series of mononuclear lanthanide complexes. The employed N-2-pyridylimidoyl-2-pyridylamidine (Py2ImAm) undergoes metal-assisted hydrolysis yielding the ligand 2-amidinopyridine (PyAm), which coordinates to the lanthanide ions affording [Ln(acac)3(PyAm)], where Ln = Eu(III) (1), Gd(III) (2), Tb(III) (3), Dy(III) (4) along with the Y(III) analogue (5). The Eu(III), Tb(III), and Dy(III) congeners exhibit characteristic emissions of red, green, and yellow light, respectively, with emission quantum yields of 3, 65, and 8%, respectively. Due to changes in the thermal population of the Stark sublevels, the Tb(III) and Dy(III) complexes can be used as efficient optical thermometers with maximum relative sensitivities of 1.57 and 2.03% K-1 for 3 and 4, respectively. These results demonstrate the viability of PyAm as an antenna for the sensitization of lanthanide ions.

16.
Nanoscale ; 12(21): 11435-11439, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32436507

RESUMO

Near-Infrared emissions are highly important in biological and telecommunications technology. For the first time, NIR-to-NIR emission was achieved in a water-soluble molecular cluster-aggregate. The erbium analogue of the highly tunable [Ln6(teaH)6(NO3)6] complex emits at 1530 nm with direct excitation at 980 nm, and can be boosted by replacing three erbium ions with three ytterbium(iii), in the molecular structure. The presented methodology is a unique approach to probe the effect of composition control and harness the luminescence properties of nanoscale molecular material.

17.
Chemistry ; 25(64): 14625-14637, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31448479

RESUMO

Lanthanide-complex-based luminescence thermometry and single-molecule magnetism are two effervescent fields of research, owing to the great promise they hold from an application standpoint. The high thermal sensitivity achievable, their contactless nature, along with sub-micrometric spatial resolution make these luminescent thermometers appealing for accurate temperature probing in miniaturised electronics. To that end, single-molecule magnets (SMMs) are expected to revolutionise the field of spintronics, thanks to the improvements made in terms of their working temperature-now surpassing that of liquid nitrogen-and manipulation of their spin state. Hence, the combination of such opto-magnetic properties in a single molecule is desirable in the aim of overcoming, among others, addressability issues. Yet, improvements must be made through design strategies for the realisation of the aforementioned goal. Moving forward from these considerations, we present a thorough investigation of the effect that changes in the ligand scaffold of a family of terbium complexes have on their performance as luminescent thermometers and SMMs. In particular, an increased number of electron-withdrawing groups yields modifications of the metal coordination environment and a lowering of the triplet state of the ligands. These effects are tightly intertwined, thus, resulting in concomitant variations of the SMM and the luminescence thermometry behaviour of the complexes. Supported by ab initio calculations, we can rationally interpret the observed trends and provide solid foundations for the development of opto-magnetic lanthanide complexes.

18.
Chem Sci ; 10(28): 6799-6808, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31391901

RESUMO

We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon YbIII ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with ab initio calculations, reveal one of the highest energy barriers reported for an YbIII-based complex. Moreover, we correlate this anisotropic barrier with the emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities.

19.
ACS Cent Sci ; 5(7): 1187-1198, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31404239

RESUMO

The development and integration of Single-Molecule Magnets (SMMs) into molecular electronic devices continue to be an exciting challenge. In such potential devices, heat generation due to the electric current is a critical issue that has to be considered upon device fabrication. To read out accurately the temperature at the submicrometer spatial range, new multifunctional SMMs need to be developed. Herein, we present the first self-calibrated molecular thermometer with SMM properties, which provides an elegant avenue to address these issues. The employment of 2,2'-bipyrimidine and 1,1,1-trifluoroacetylacetonate ligands results in a dinuclear compound, [Dy2(bpm)(tfaa)6], which exhibits slow relaxation of the magnetization along with remarkable photoluminescent properties. This combination allows the gaining of fundamental insight in the electronic properties of the compound and investigation of optomagnetic cross-effects (Zeeman effect). Importantly, spectral variations stemming from two distinct thermal-dependent mechanisms taking place at the molecular level are used to perform luminescence thermometry over the 5-398 K temperature range. Overall, these properties make the proposed system a unique molecular luminescent thermometer bearing SMM properties, which preserves its temperature self-monitoring capability even under applied magnetic fields.

20.
Methods Appl Fluoresc ; 5(2): 024012, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541928

RESUMO

The chemical composition, shape and size of upconverting nanoparticles are known to have a great influence on their spectroscopic properties, such as the emission color and the emission intensity variation as a function of temperature. This work shows the color tuning and the thermal sensitivity of NaYb0.67Gd0.30F4:Tm0.015:Ho0.015 nanoparticles synthesized by two different approaches of the same synthetic method showing the influence of size and morphology, 250 nm hexagonal-plated and 30 nm spheroidal nanoparticles, on the visible upconversion color under NIR irradiation. According to the 1931-CIE diagram, the hexagonal-shaped nanoparticles show white light emission and the spheroidal ones generate red light emission under 980 nm excitation. Besides, the variation of the luminescence intensity ratio of Tm3+ emissions as a function of temperature was monitored in the 77-293 K temperature range, and the maximum relative sensitivity (Sm) of the samples reached 1.33% K-1 for the hexagonal-plated nanoparticles and 1.76% K-1 for the spheroidal nanoparticles. These maximum sensitivity values are higher compared to the ones found in the literature for temperature sensing using upconverting nanoparticles. These data suggest the versatility of these nanoparticles for applications on white light emission and nanothermometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...