Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 22(5): 1773-1788, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707685

RESUMO

Abdominal aortic aneurysm disease is the local enlargement of the aorta, typically in the infrarenal section, causing up to 200,000 deaths/year. In vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We used a method that combines 4D ultrasound and direct deformation estimation to compute in vivo 3D Green-Lagrange strain in murine angiotensin II-induced dissecting aortic aneurysms, a commonly used mouse model. After euthanasia, histological staining of cross-sectional sections along the aorta was performed in areas where in vivo strains had previously been measured. The histological sections were segmented into intact and fragmented elastin, thrombus with and without red blood cells, and outer vessel wall including the adventitia. Meshes were then created from the individual contours based on the histological segmentations. The isolated contours of the outer wall and lumen from both imaging modalities were registered individually using a coherent point drift algorithm. 2D finite element models were generated from the meshes, and the displacements from the registration were used as displacement boundaries of the lumen and wall contours. Based on the resulting deformed contours, the strains recorded were grouped according to segmented tissue regions. Strains were highest in areas containing intact elastin without thrombus attachment. Strains in areas with intact elastin and thrombus attachment, as well as areas with disrupted elastin, were significantly lower. Strains in thrombus regions with red blood cells were significantly higher compared to thrombus regions without. We then compared this analysis to statistical distribution indices and found that the results of each aligned, elucidating the relationship between vessel strain and structural changes. This work demonstrates the possibility of advancing in vivo assessments to a microstructural level ultimately improving patient outcomes.


Assuntos
Dissecção Aórtica , Elastina , Animais , Humanos , Camundongos , Estudos Transversais , Dissecção Aórtica/diagnóstico por imagem , Aorta , Ultrassonografia
2.
Front Bioeng Biotechnol ; 11: 1165963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415789

RESUMO

Introduction: Correction of knee malalignment by guided growth using a tension-band plate is a common therapy to prevent knee osteoarthritis among other things. This approach is based on the Hueter-Volkmann law stating that the length growth of bones is inhibited by compression and stimulated by tension. How the locally varying mechanical loading of the growth plate is influenced by the implant has not yet been investigated. This study combines load cases from the gait cycle with personalized geometry in order to investigate the mechanical influence of the tension-band plates. Methods: Personalized finite element models of four distal femoral epiphyses of three individuals, that had undergone guided growth, were generated. Load cases from the gait cycles and musculoskeletal modelling were simulated with and without implant. Morphological features of the growth plates were obtained from radiographs. 3D geometries were completed using non-individual Magnetic Resonance Images of age-matched individuals. Boundary conditions for the models were obtained from instrumented gait analyses. Results: The stress distribution in the growth plate was heterogenous and depended on the geometry. In the insertion region, the implants locally induced static stress and reduced the cyclic loading and unloading. Both factors that reduce the growth rate. On the contralateral side of the growth plate, increased tension stress was observed, which stimulates growth. Discussion: Personalized finite element models are able to estimate the changes of local static and cyclic loading of the growth plate induced by the implant. In future, this knowledge can help to better control growth modulation and avoid the return of the malalignment after the treatment. However, this requires models that are completely participant-specific in terms of load cases and 3D geometry.

3.
Biomech Model Mechanobiol ; 22(5): 1709-1727, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37405538

RESUMO

Abdominal aortic aneurysms are a degenerative disease of the aorta associated with high mortality. To date, in vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We have used time-resolved 3D ultrasound strain imaging to calculate spatially resolved in-plane strain distributions characterized by mean and local maximum strains, as well as indices of local variations in strains. Likewise, we here present a method to generate averaged models from multiple segmentations. Strains were then calculated for single segmentations and averaged models. After registration with aneurysm geometries based on CT-A imaging, local strains were divided into two groups with and without calcifications and compared. Geometry comparison from both imaging modalities showed good agreement with a root mean squared error of 1.22 ± 0.15 mm and Hausdorff Distance of 5.45 ± 1.56 mm (mean ± sd, respectively). Using averaged models, circumferential strains in areas with calcifications were 23.2 ± 11.7% (mean ± sd) smaller and significantly distinguishable at the 5% level from areas without calcifications. For single segmentations, this was possible only in 50% of cases. The areas without calcifications showed greater heterogeneity, larger maximum strains, and smaller strain ratios when computed by use of the averaged models. Using these averaged models, reliable conclusions can be made about the local elastic properties of individual aneurysm (and long-term observations of their change), rather than just group comparisons. This is an important prerequisite for clinical application and provides qualitatively new information about the change of an abdominal aortic aneurysm in the course of disease progression compared to the diameter criterion.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Calcinose , Humanos , Aorta Abdominal/diagnóstico por imagem , Fatores de Risco , Ruptura Aórtica/diagnóstico por imagem , Ruptura Aórtica/complicações , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Ultrassonografia/métodos , Calcinose/diagnóstico por imagem
4.
Polymers (Basel) ; 11(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30960550

RESUMO

The application of techniques to improve the surface finish of pieces obtained by fused deposition modelling, as well as other functional aspects, is of great interest nowadays. Polylactic acid, a biodegradable material, has been considered a possible substitute for petroleum-based polymers. In this work, different chemical post-processing methods are applied to polylactic acid pieces obtained by fused deposition modelling and some characteristics are studied. Structural, thermal, and crystallinity property changes are analyzed according to the treatments applied. This can prevent degradation, eliminate the glass transition phase of the material, and thereby increase the thermal resistance by about 50 °C. An improvement in the roughness of the pieces of up to 97% was also found.

5.
Materials (Basel) ; 12(3)2019 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717481

RESUMO

In the context of food packaging design, customization enhances the value of a product by meeting consumer needs. Personalization is also linked to adaptation, so the properties of the packaging can be improved from several points of view: functional, aesthetic, economic and ecological. Currently, functional and formal properties of packaging are not investigated in depth. However, the study of both properties is the basis for creating a new concept of personalized and sustainable product. In accordance with this approach, a conceptual design procedure of packaging with personalized and adapted geometries based on the digitization of fresh food is proposed in this work. This study is based on the application of advanced technologies for the design and development of food packaging, apples in this work, in order to improve the quality of the packaging. The results obtained show that it is possible to use advanced technologies in the early stages of product design in order to obtain competitive products adapted to new emerging needs.

6.
Materials (Basel) ; 12(3)2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720750

RESUMO

The increased consumption of food requiring thermoformed packaging implies that the packaging industry demands customized solutions in terms of shapes and sizes to make each packaging unique. In particular, food industry increasingly requires more transparent packaging, with greater clarity and a better presentation of the product they contain. However, in turn, the differentiation of packaging is sought through its geometry and quality, as well as the arrangement of food inside the packaging. In addition, these types of packaging usually include ribs in the walls to improve their physical properties. However, these ribs also affect the final aesthetics of the product. In accordance with this, this research study analyses the mechanical properties of different relief geometries that can affect not only their aesthetics but also their strength. For this purpose, tensile and compression tests were carried out using thermoformed PET sheets. The results provide comparative data on the reliefs studied and show that there are differences in the mechanical properties according to shape, size and disposition in the package.

7.
Materials (Basel) ; 11(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126182

RESUMO

Plastic matrix composite materials are an excellent choice for structural applications where high strength-weight and stiffness-weight ratios are required. These materials are being increasingly used in diverse industrial sectors, particularly in aerospace. Due to the strict tolerances required, they are usually machined with drilling cycles due to the type of mounting through rivets. In this sense, laser beam drilling is presented as an alternative to conventional drilling due to the absence of tool wear, cutting forces, or vibrations during the cutting process. However, the process carries with it other problems that compromise the integrity of the material. One of these is caused by the high temperatures generated during the interaction between the laser and the material. In this work, variance analysis is used to study the influence of scanning speed and frequency on macro geometric parameters, surface quality, and defects (taper and heat affected zone). Also, in order to identify problems in the wall of the drill, stereoscopic optical microscopy (SOM) and scanning electron microscopy (SEM) techniques are used. This experimental procedure reveals the conditions that minimize deviations, defects, and damage in machining holes.

8.
Materials (Basel) ; 11(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042295

RESUMO

Turning of light alloys as aluminum-based UNS A92024-T3 is broadly implemented in the manufacture of critical aircraft parts, so ensuring a good functional performance of these pieces is essential. Moreover, operational conditions of these pieces include saline environments where corrosion processes are present. In this paper, a methodology for the evaluation of the functional performance in turned pieces is proposed. Specimens affected and not affected by corrosion are compared. In addition, performance in service through tensile stress tests of these parts is considered. The results show that turning improves the functional performance of UNS A92024-T3 alloy and that corrosion can enhance the mechanical properties of this alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...