Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(13): 3220-3235, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38520396

RESUMO

The liquid structure of three common ionic liquids (ILs) was investigated by neutron scattering for the first time. The ILs were based on the bis(trifluoromethanesulfonyl)imide anion, abbreviated in the literature as [NTf2]- or [TFSI]-, and on the following cations: 1-ethyl-3-methylimidazolium, [C2mim]+; 1-decyl-3-methylimidazolium, [C10mim]+; and trihexyl(tetradecyl)phosphonium, [P666,14]+. Comparative analysis of the three ILs confirmed increased size of nonpolar nanodomains with increasing bulk of alkyl chains. It also sheds light on the cation-anion interactions, providing experimental insight into strength, directionality, and angle of hydrogen bonds between protons on the imidazolium ring, as well as H-C-P protons in [P666,14]+, to oxygen and nitrogen atoms in the [NTf2]-. The new Dissolve data analysis package enabled, for the first time, the analysis of neutron scattering data of ILs with long alkyl chains, in particular, of [P666,14][NTf2]. Results generated with Dissolve were validated by comparing outputs from three different models, starting from three different sets of cation charges, for each of the three ILs, which gave convergent outcomes. Finally, a modified method for the synthesis of perdeuterated [P666,14][NTf2] has been reported, with the aim of reporting a complete set of synthetic and data processing approaches, laying robust foundations that enable the study of the phosphonium ILs family by neutron scattering.

2.
Phys Chem Chem Phys ; 25(17): 12207-12219, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092350

RESUMO

In this work, H/D isotopic substitution neutron diffraction was combined with empirical potential structure refinement (EPSR) and DFT-based quantum calculations to study the interactions between B(OH)3 boric acid molecules, B(OH)4- metaborate ions, water molecules, and potassium cations in borate solutions. The results show that the solute ions and molecules have a marked effect on the second coordination shell of the water molecules, causing a greater deviation from a tetrahedral structure than is observed for pure water. Potassium ions and trans-B(OH)3 tend to form a monodentate contact ion pair (MCIP) with a K-B distance ∼3.8 Å, which remains constant upon changing the solution concentration. Potassium ions and cis-B(OH)3 form both a MCIP at K-B ∼3.8 Å and a bidentate contact ion pair (BCIP) at K-B ∼3.4 Å. As the solution concentration increases, there is a BCIP to MCIP transformation. Boric acid molecules can undergo hydration in one of three ways: direct hydration, interstitial hydration, and axial hydration. The energetic hydration preference is direct hydration → interstitial hydration → axial hydration. Nine water molecules are required when all water molecules directly interact with the -OH groups of B(OH)4-, and a tenth water molecule is located at an interstitial position. The hydrogen bonding between boric acid molecule/metaborate ion and water molecules is stronger than that between water molecules in the hydration layer.

3.
Chemphyschem ; 24(12): e202300031, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37002728

RESUMO

Defects fundamentally govern the properties of all real materials. Correlating molecular defects to macroscopic quantities remains a challenge, particularly in the liquid phase. Herein, we report the influence of hydrogen bonds (HB) acting as defects in mixtures of non-hydroxyl-functionalized ionic liquids (ILs) with an increasing concentration of hydroxyl-functionalized ILs. We observed two types of HB defects: The conventional HBs between cation and anion (c-a), and the elusive HBs between cations (c-c) despite the repulsive Coulomb forces. We use neutron diffraction with isotopic substitution in combination with molecular dynamics simulations for measuring the geometry, strength, and distribution of mobile OH defects in the IL mixtures. In principle, this procedure allows relating the number and stability of defects to macroscopic properties such as diffusion, viscosity, and conductivity, which are of utmost importance for the performance of electrolytes in batteries and other electrical devices.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Difração de Nêutrons , Ânions/química , Cátions/química
4.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684333

RESUMO

The atomic picture of cellulose dissolution in alkali/urea aqueous solution is still not clear. To reveal it, we use trehalose as the model molecule and total scattering as the main tool. Three kinds of alkali solution, i.e., LiOH, NaOH and KOH are compared. The most probable all-atom structures of the solution are thus obtained. The hydration shell of trehalose has a layered structure. The smaller alkali ions can penetrate into the glucose rings around oxygen atoms to form the first hydration layer. The larger urea molecules interact with hydroxide groups to form complexations. Then, the electronegative complexation can form the second hydration layer around alkali ions via electrostatic interaction. Therefore, the solubility of alkali aqueous solution for cellulose decreases with the alkali cation radius, i.e., LiOH > NaOH > KOH. Our findings are helpful for designing better green solvents for cellulose.


Assuntos
Trealose , Ureia , Álcalis , Celulose/química , Nêutrons , Hidróxido de Sódio/química , Solubilidade , Ureia/química , Água/química
5.
Struct Dyn ; 8(1): 014901, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33644253

RESUMO

Trehalose is chosen as a model molecule to investigate the dissolution mechanism of cellulose in NaOH/urea aqueous solution. The combination of neutron total scattering and empirical potential structure refinement yields the most probable all-atom positions in the complex fluid and reveals the cooperative dynamic effects of NaOH, urea, and water molecules in the dissolution process. NaOH directly interacts with glucose rings by breaking the inter- and intra-molecular hydrogen bonding. Na+, thus, accumulates around electronegative oxygen atoms in the hydration shell of trehalose. Its local concentration is thereby 2-9 times higher than that in the bulk fluid. Urea molecules are too large to interpenetrate into trehalose and too complex to form hydrogen bonds with trehalose. They can only participate in the formation of the hydration shell around trehalose via Na+ bridging. As the main component in the complex fluid, water molecules have a disturbed tetrahedral structure in the presence of NaOH and urea. The structure of the mixed solvent does not change when it is cooled to -12 °C. This indicates that the dissolution may be a dynamic process, i.e., a competition between hydration shell formation and inter-molecule hydrogen bonding determines its dissolution. We, therefore, predict that alkali with smaller ions, such as LiOH, has better solubility for cellulose.

6.
Angew Chem Int Ed Engl ; 58(37): 12887-12892, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177605

RESUMO

We characterize the double-faced nature of hydrogen bonding in hydroxy-functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H⋅⋅⋅O and O⋅⋅⋅O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation-cation interaction is stronger than the cation-anion interaction. We compare the hydrogen-bond geometries of both "doubly charged hydrogen bonds" with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like-charge attraction is almost competitive with conventional ion-pair formation.

7.
Chem Commun (Camb) ; 54(63): 8689-8692, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29938294

RESUMO

The presence of the weakly-associated encounter complex in the model frustrated Lewis pair solution (FLP): tris(tert-butyl)phosphine (P(tBu)3) and tris(pentafluorophenyl)borane (BCF) in benzene, was confirmed via PB correlation analysis from neutron scattering data. On average, ca. 5% of dissolved FLP components were in the associated state. NMR spectra of the FLP in benzene gave no evidence of such association, in agreement with earlier reports and the transient nature of the encounter complex. In contrast, the corresponding FLP solution in the ionic liquid, 1-decyl-3-methylimidazolium bistriflamide, [C10mim][NTf2], generated NMR signals that can be attributed to formation of encounter complexes involving over 20% of the dissolved species. The low diffusivity characteristics of ionic liquids is suggested to enhance high populations of encounter complex. The FLP in the ionic liquid solution retained its ability to split hydrogen.

8.
Phys Chem Chem Phys ; 20(22): 15273-15287, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29790512

RESUMO

We present results of a combined vacuum ultraviolet (VUV) and infrared (IR) photoabsorption study of amorphous benzene : water mixtures and layers to investigate the benzene-water interaction in the solid phase. VUV spectra of 1 : 1, 1 : 10 and 1 : 100 benzene : water mixtures at 24 K reveal a concentration dependent shift in the energies of the 1B2u, 1B1u and 1E1u electronic states of benzene. All the electronic bands blueshift from pure amorphous benzene towards gas phase energies with increasing water concentration. IR results reveal a strong dOH-π benzene-water interaction via the dangling OH stretch of water with the delocalised π system of the benzene molecule. Although this interaction influences the electronic states of benzene with the benzene-water interaction causing a redshift in the electronic states from that of the free benzene molecule, the benzene-benzene interaction has a more significant effect on the electronic states of benzene. VUV spectra of benzene and water layers show evidence of non-wetting between benzene and water, characterised by Rayleigh scattering tails at wavelengths greater than 220 nm. Our results also show evidence of benzene-water interaction at the benzene-water interface affecting both the benzene and the water electronic states. Annealing the mixtures and layers of benzene and water show that benzene remains trapped in/under water ice until water desorption near 160 K. These first systematic studies of binary amorphous mixtures in the VUV, supported with complementary IR studies, provide a deeper insight into the influence of intermolecular interactions on intramolecular electronic states with significant implications for our understanding of photochemical processes in more realistic astrochemical environments.

9.
J Phys Chem A ; 117(39): 9975-84, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23621684

RESUMO

The method of laser-induced reaction (LIR) is used to obtain high-resolution IR spectra of CH2D(+) in collision with n-H2 at a nominal temperature of 14 K. For this purpose, a home-built optical parametric oscillator (OPO), tunable in the range of 2500-4000 cm(-1), has been coupled to a 22-pole ion trap apparatus. In total, 112 lines of the ν1 and ν4 bands have been recorded. A line list is inferred from a careful analysis of the shape of the LIR signal. Line positions have been determined to an accuracy of 1 × 10(-4) cm(-1), allowing for the prediction of pure rotational transitions with MHz accuracy. In addition, an IR-THz double-resonance LIR depletion technique is applied to H2D(+) to demonstrate the feasibility for pure rotational spectroscopy with LIR.

10.
Philos Trans A Math Phys Eng Sci ; 370(1978): 5041-54, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23028152

RESUMO

The proton affinities of hydrogen and oxygen are very similar. Therefore, it has been discussed that the proton transfer from the omnipresent H(3)(+) to molecular oxygen in the near thermoneutral reaction H(3)(+) + O(2) <--> O(2)H(+) + H(2) effectively binds the interstellar oxygen in O(2)H(+). In this work, the proton transfer reaction has been investigated in a low-temperature 22-pole ion trap from almost room temperature (280 K) down to the lowest possible temperature limited by freeze out of oxygen gas (about 40 K at a low pressure). The Arrhenius behaviour of the rate coefficient for the forward reaction shows that it is subject to an activation energy of E(A)/k=113 K. Thus, the forward reaction can proceed only in higher temperature molecular clouds. Applying laser-induced reactions to the given reaction (in the backward direction), a preliminary search for spectroscopic signatures of O(2)H(+) in the infrared was unsuccessful, whereas the forward reaction has been successfully used to probe the population of the lowest ortho and para levels of H(3)(+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...