Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Phys Chem Chem Phys ; 22(37): 21488-21493, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32954395

RESUMO

The weak infrared spectrum of CO2-Ar corresponding to the (0111) ← (0110) hot band of CO2 is detected in the region of the carbon dioxide ν3 fundamental vibration (≈2340 cm-1), using a tunable OPO laser source to probe a pulsed supersonic slit jet expansion. While this method was previously thought to cool clusters to the lowest rotational states of the ground vibrational state, here we show that under suitable jet expansion conditions, sufficient population remains in the first excited bending mode of CO2 (1-2%) to enable observation of vibrationally hot CO2-Ar, and thus to investigate the symmetry breaking of the intramolecular bending mode of CO2 in the presence of Ar. The bending mode of the CO2 monomer splits into an in-plane and an out-of-plane mode, strongly linked by a Coriolis interaction. Analysis of the spectrum yields a direct measurement of the in-plane/out-of-plane splitting measured to be 0.8770 cm-1. Calculations were carried out to determine if key features of our results, i.e., the sign and magnitude of the shift in the energy for the two intramolecular bending modes, are consistent with a quantum chemical potential energy surface. This aspect of intramolecular interactions has received little previous experimental and theoretical consideration. Therefore, we provide an additional avenue by which to study the intramolecular dynamics of this simplest dimer in its bending modes. Similar results should be possible for other weakly-bound complexes.

2.
J Pathol ; 240(1): 108-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27319744

RESUMO

Mutations of vacuolar protein sorting-associated protein 33b (VPS33B) cause arthrogryposis, renal dysfunction, and cholestasis syndrome, and a lack of platelet α-granules in the affected patients. Conditional Vps33b knockout mice were developed to investigate the function(s) of Vps33b in platelet α-granule formation. We found that early embryonic deletion of Vps33b was lethal. PF4-Cre-driven megakaryocyte-targeted Vps33b gene deletion greatly diminished Vps33b expression in platelets, but had no effect on platelet α-granule formation and protein content. Tamoxifen-induced, haematopoietic stem cell (HSC)-specific Vps33b deletion completely depleted Vps33b in platelets, caused the absence of α-granules, and increased the number of vacuoles in platelets and megakaryocytes. VPS33B association with VIPAS39, α-tubulin, and SEC22B was identified by co-immunoprecipitation, mass spectra, and immunoblotting in human embryonic kidney 293T (HEK293T) cells. Also, pull-down experiments revealed that VIPAS39 bound to intact VPS33B; in contrast, α-tubulin and SEC22B separately interacted with the sec1-like domains of VPS33B. Vps33b deficiency in megakaryocytes disturbs the redistribution of Vipas39 and Sec22b to proplatelets, and interrupted the co-localization of Sec22b with Vwf-positive vesicles. The data presented in this study suggest that Vps33b is involved in α-granule formation possibly by facilitating the Vwf-positive vesicular trafficking to α-granule-related vacuoles in megakaryocytes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Megacariócitos/metabolismo , Transporte Proteico/genética , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte Vesicular/genética
3.
Blood ; 126(20): 2307-19, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26405223

RESUMO

Controlling the activation of platelets is a key strategy to mitigate cardiovascular disease. Previous studies have suggested that the ATP-binding cassette (ABC) transporter, ABCC4, functions in platelet-dense granules. Using plasma membrane biotinylation and super-resolution microscopy, we demonstrate that ABCC4 is primarily expressed on the plasma membrane of both mouse and human platelets. Platelets lacking ABCC4 have unchanged dense-granule function, number, and volume, but harbor a selective impairment in collagen-induced aggregation. Accordingly, Abcc4 knockout (KO) platelet attachment to a collagen substratum was also faulty and associated with elevated intracellular cyclic AMP (cAMP) and reduced plasma membrane localization of the major collagen receptor, GPVI. In the ferric-chloride vasculature injury model, Abcc4 KO mice exhibited markedly impaired thrombus formation. The attenuation of platelet aggregation by the phosphodiesterase inhibitor EHNA (a non-ABCC4 substrate), when combined with Abcc4 deficiency, illustrated a crucial functional interaction between phosphodiesterases and ABCC4. This was extended in vivo where EHNA dramatically prolonged the bleeding time, but only in Abcc4 KO mice. Further, we demonstrated in human platelets that ABCC4 inhibition, when coupled with phosphodiesterase inhibition, strongly impaired platelet aggregation. These findings have important clinical implications because they directly highlight an important relationship between ABCC4 transporter function and phosphodiesterases in accounting for the cAMP-directed activity of antithrombotic agents.


Assuntos
Plaquetas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Agregação Plaquetária , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Plaquetas/patologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Trombose/genética , Trombose/metabolismo , Trombose/patologia
5.
PLoS One ; 8(11): e80780, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236201

RESUMO

The involvement of platelets in tumor progression is well recognized. The depletion of circulating platelets or pharmacologic inhibitors of platelet activation decreases the metastatic potential of circulating tumor cells in metastasis mouse models. The platelet ADP receptor P2Y12 amplifies the initial hemostatic responses activated by a variety of platelet agonists and stabilizes platelet aggregation, playing a crucial role in granule secretion, integrin activation and thrombus formation. However, the relationship between P2Y12 and tumor progression is not clear. In our study, the Lewis Lung Carcinoma (LLC) spontaneous metastatic mouse model was used to evaluate the role of P2Y12 in metastasis. The results demonstrated that P2Y12 deficiency significantly reduced pulmonary metastasis. Further studies indicated that P2Y12 deficiency diminished the ability of LLC cells to induce platelet shape change and release of active TGFß1 by a non-contact dependent mechanism resulting in a diminished, platelet-induced EMT-like transformation of the LLC cells, and that transformation probably is a prerequisite of LLC cell metastasis. Immunohistochemical analyses indicated an obvious P2Y12 deficiency related attenuation of recruitment of VEGFR1+ bone marrow derived cell clusters, and extracellular matrix fibronectin deposition in lungs, which presumably are required for pre-metastatic niche formation. In contrast to the LLC cells, non-epithelial melanoma B16 cells induced platelet aggregation in a cell number and P2Y12-dependent manner. Also, a platelet induced EMT-like transformation of B16 cells is dependent on P2Y12. In agreement with the LLC cell model, platelet P2Y12 deficiency also results in significantly less lung metastasis in the B16 melanoma experimental metastasis model. These results demonstrate that P2Y12 is a safe drug target for anti-thrombotic therapy, and that P2Y12 may serve as a new target for inhibition of tumor metastasis.


Assuntos
Plaquetas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Receptores Purinérgicos P2Y12/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Melanoma Experimental , Camundongos , Camundongos Knockout , Metástase Neoplásica , Agregação Plaquetária , Receptores Purinérgicos P2Y12/deficiência , Receptores Purinérgicos P2Y12/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Microambiente Tumoral/genética
6.
PLoS One ; 7(12): e51037, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236426

RESUMO

BACKGROUND: ADP is an important physiological agonist that induces integrin activation and platelet aggregation through its receptors P2Y(1) (Gα(q)-coupled) and P2Y(12) (Gα(i)-coupled). P2Y(12) plays a critical role in platelet activation and thrombosis. Adenosine-based P2Y(12) antagonists, 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2MeSAMP) and Cangrelor (AR-C69931MX) have been widely used to demonstrate the role of P2Y(12) in platelet function. Cangrelor is being evaluated in clinical trials of thrombotic diseases. However, a recent study reported that both 2MeSAMP and Cangrelor raise intra-platelet cAMP levels and inhibit platelet aggregation through a P2Y(12)-independent mechanism. METHODOLOGY/PRINCIPAL FINDINGS: The present work, using P2Y(12) deficient mice, sought to clarify previous conflicting reports and to elucidate the mechanisms by which 2MeSAMP and Cangrelor inhibit platelet activation and thrombosis. 2MeSAMP and Cangrelor inhibited aggregation and ATP release of wild-type but not P2Y(12) deficient platelets. 2MeSAMP and Cangrelor neither raised intracellular cAMP concentrations nor induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in washed human or mouse platelets. Furthermore, unlike the activators (PGI(2) and forskolin) of the cAMP pathway, 2MeSAMP and Cangrelor failed to inhibit Ca(2+) mobilization, Akt phosphorylation, and Rap1b activation in P2Y(12) deficient platelets. Importantly, while injection of Cangrelor inhibited thrombus formation in a FeCl(3)-induced thrombosis model in wild-type mice, it failed to affect thrombus formation in P2Y(12) deficient mice. CONCLUSIONS: These data together demonstrate that 2MeSAMP and Cangrelor inhibit platelet function through the P2Y(12)-dependent mechanism both in vitro and in vivo.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenosina/análogos & derivados , Plaquetas/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Tionucleosídeos/farmacologia , Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Animais , Plaquetas/metabolismo , Moléculas de Adesão Celular/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Epoprostenol/farmacologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
PLoS One ; 7(10): e47356, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082158

RESUMO

Integrin αIIbß3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the ß3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the ß3 cytoplasmic domain residues R(724)KEFAKFEEER(734). In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by ß3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated ß3 peptide R(724)KEFAKFEEER(734), each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbß3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbß3-Δ724 or αIIbß3E(724)AERKFERKFE(734), but not in cells expressing wild type αIIbß3. In summary, SFK(s) and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the ß3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets.


Assuntos
Plaquetas/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Animais , Plaquetas/efeitos dos fármacos , Células CHO , Movimento Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fibrinogênio/farmacologia , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Glicoproteína IIb da Membrana de Plaquetas/química , Estrutura Terciária de Proteína , Receptores de Trombina/agonistas , Receptores de Trombina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboxano A2/biossíntese , Quinases da Família src/metabolismo
8.
J Biol Chem ; 287(49): 41277-87, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23066026

RESUMO

The Src family kinases (SFKs) play essential roles in collagen- and von Willebrand factor (VWF)-mediated platelet activation. However, the roles of SFKs in G protein-coupled receptor-mediated platelet activation and the molecular mechanisms whereby SFKs are activated by G protein-coupled receptor stimulation are not fully understood. Here we show that the thrombin receptor protease-activated receptor 4 agonist peptide AYPGKF elicited SFK phosphorylation in P2Y(12) deficient platelets but stimulated minimal SFK phosphorylation in platelets lacking G(q). We have previously shown that thrombin-induced SFK phosphorylation was inhibited by the calcium chelator 5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (dimethyl-BAPTA). The calcium ionophore A23187 induced SFK phosphorylation in both wild-type and G(q) deficient platelets. Together, these results indicate that SFK phosphorylation in response to thrombin receptor stimulation is downstream from G(q)/Ca(2+) signaling. Moreover, A23187-induced thromboxane A(2) synthesis, platelet aggregation, and secretion were inhibited by preincubation of platelets with a selective SFK inhibitor, PP2. AYPGKF-induced thromboxane A(2) production in wild-type and P2Y(12) deficient platelets was abolished by PP2, and AYPGKF-mediated P-selectin expression, integrin α(IIb)ß(3) activation, and aggregation of P2Y(12) deficient platelets were partially inhibited by the PKC inhibitor Ro-31-8220, PP2, dimethyl-BAPTA, or LY294002, but were abolished by Ro-31-8220 plus PP2, dimethyl-BAPTA, or LY294002. These data indicate that Ca(2+)/SFKs/PI3K and PKC represent two alternative signaling pathways mediating G(q)-dependent platelet activation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação Enzimológica da Expressão Gênica , Oligopeptídeos/metabolismo , Proteína Quinase C/metabolismo , Quinases da Família src/metabolismo , Animais , Plaquetas/metabolismo , Antígenos CD18/metabolismo , Calcimicina/farmacologia , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Fibrinogênio/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ativação Plaquetária , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Ligação Proteica , Receptores Purinérgicos P2Y12/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 32(9): 2232-40, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22814751

RESUMO

OBJECTIVE: Integrins mediate platelet adhesion and transmit outside-in signals leading to platelet spreading. Phosphoinositide 3-kinases (PI3Ks) play a critical role in outside-in signaling and platelet spreading; however, the mechanisms of PI3K activation and function in outside-in signaling are unclear. We sought to determine the role of the Akt family of serine/threonine kinases and activation mechanisms of the PI3K/Akt pathway in outside-in signaling. METHODS AND RESULTS: Akt inhibitors and Akt3 knockout inhibited platelet spreading on fibrinogen, indicating that Akt is important in integrin outside-in signaling. Akt inhibitors and Akt3 knockout also diminished integrin-dependent phosphorylation of glycogen synthase kinase-3ß. Inhibition of glycogen synthase kinase-3ß reversed the inhibitory effects of Akt3 knockout and inhibitors of Akt or PI3K on platelet spreading, indicating that glycogen synthase kinase-3ß is a downstream target of Akt in outside-in signaling. Integrin-dependent activation of the PI3K-Akt pathway requires Src family kinase. Akt phosphorylation is also significantly inhibited in ADP receptor P2Y12 knockout platelets and further inhibited in P2Y12 knockout platelets treated with a P2Y1 antagonist. Consistently, P2Y12 knockout and P2Y1 inhibition together reduced platelet spreading. CONCLUSIONS: These results demonstrate that integrin outside-in signaling and platelet spreading requires Src family kinase-dependent and ADP receptor-amplified activation of the PI3K-Akt-GSK-3ß pathway.


Assuntos
Difosfato de Adenosina/metabolismo , Plaquetas/enzimologia , Forma Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Integrinas/metabolismo , Ativação Plaquetária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Plaquetas/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Quinases da Família src/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 32(8): e81-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22628428

RESUMO

OBJECTIVE: The aim of the study was to evaluate the role of purinergic receptor P2Y, G protein-coupled 12 (P2Y12), an ADP receptor, in the development of atherosclerotic lesions. METHODS AND RESULTS: Apolipoprotein E-null mice were crossed with P2y12(-/-) mice to generate double knockout mice. The double knockout mice and the control apolipoprotein E-null mice were fed a high-fat diet for 20 weeks. Assessment of the atherosclerotic lesions in the control and double knockout mice demonstrated that P2Y12 deficiency caused a diminished lesion area, an increased fibrous content at the plaque site, and decreased monocyte/macrophage infiltration of the lesions. Polymerase chain reaction studies revealed that white blood cells do not express significant levels of P2Y12. Bone marrow transplantation experiments confirmed that P2Y12 expressed on platelets is a key factor responsible for atherosclerosis, but do not exclude a role of smooth muscle cell P2Y12. Supernatant fluid from activated P2y12(+/+) but not P2y12(-/-) platelets was capable of causing monocyte migration. In vitro studies showed that platelet P2Y12 deficiency suppressed platelet factor 4 secretion and P-selectin expression. Further work demonstrated that platelet P2Y12, through inhibition of the cAMP/protein kinase A pathway, critically regulates the release of platelet factor 4, and thereby affects monocyte recruitment and infiltration. CONCLUSIONS: These results demonstrate that P2Y12 modulates atherogenesis, at least in part by augmenting inflammatory cell recruitment via regulation of platelet α-granule release.


Assuntos
Aterosclerose/etiologia , Receptores Purinérgicos P2Y12/fisiologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Plaquetas/química , Transplante de Medula Óssea , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Citocinas/sangue , Grânulos Citoplasmáticos/metabolismo , Feminino , Leucócitos/fisiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Receptores Purinérgicos P2Y12/análise , Transdução de Sinais , Túnica Íntima/patologia
11.
Thromb Res ; 130(2): 203-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22482832

RESUMO

INTRODUCTION: Peptide LSARLAF (LSA) can bind and activate integrin αIIbß3 in the absence of 'inside-out' signal. The active αIIbß3 mediates 'outside-in' signaling that elicits platelet aggregation, granule secretion and TxA2 production. Here we identify the membrane glycoproteins which mediate LSA-induced platelet activation other than αIIbß3, and determine the roles of Src, PLCγ2, FcRγ-chain, and SLP-76 in LSA-induced platelet activation. METHOD: Ligand-receptor binding assay was performed to study the effect of peptide LSA or its control peptide FRALASL (FRA) on integrins binding to their ligands. Spreading of CHO cells expressing αIIbß3 or αVß3 on immobilized fibrinogen was measured in the presence of LSA or FRA. Washed ß3, Src, FcRγ-chain, LAT and SLP-76 deficient platelets aggregation and secretion were tested in response to LSA. RESULTS: Ligand-receptor binding assay indicated that LSA promoted the binding of multiple ligands to αIIbß3 or αVß3. LSA also enhanced CHO cells with αIIbß3 or αVß3 expression spreading on immobilized fibrinogen. ß3 deficient platelets failed to aggregate and secrete in response to LSA. The phosphorylation of PLCγ2 and Syk was also ß3 dependent. Src, FcRγ-chain, LAT and SLP-76 deficient platelets did not aggregate, secrete ATP or produce TxA2 in response to LSA. CONCLUSION: LSA-induced platelet activation is ß3 dependent, and signaling molecules Src, FcRγ-chain, SLP-76 and LAT play crucial roles in LSA-induced ß3 mediated signaling.


Assuntos
Plaquetas/efeitos dos fármacos , Integrina beta3/imunologia , Oligopeptídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Plaquetas/imunologia , Plaquetas/metabolismo , Células CHO , Adesão Celular , Cricetinae , Deleção de Genes , Integrina alfaVbeta3/imunologia , Integrina beta3/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Oligopeptídeos/imunologia , Fosfolipase C gama/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Proteínas Tirosina Quinases/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Quinase Syk
13.
J Biol Chem ; 286(45): 39466-77, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21940635

RESUMO

Rap1b is activated by platelet agonists and plays a critical role in integrin α(IIb)ß(3) inside-out signaling and platelet aggregation. Here we show that agonist-induced Rap1b activation plays an important role in stimulating secretion of platelet granules. We also show that α(IIb)ß(3) outside-in signaling can activate Rap1b, and integrin outside-in signaling-mediated Rap1b activation is important in facilitating platelet spreading on fibrinogen and clot retraction. Rap1b-deficient platelets had diminished ATP secretion and P-selectin expression induced by thrombin or collagen. Importantly, addition of low doses of ADP and/or fibrinogen restored aggregation of Rap1b-deficient platelets. Furthermore, we found that Rap1b was activated by platelet spreading on immobilized fibrinogen, a process that was not affected by P2Y(12) or TXA(2) receptor deficiency, but was inhibited by the selective Src inhibitor PP2, the PKC inhibitor Ro-31-8220, or the calcium chelator demethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis. Clot retraction was abolished, and platelet spreading on fibrinogen was diminished in Rap1b-deficient platelets compared with wild-type controls. The defects in clot retraction and spreading on fibrinogen of Rap1b-deficient platelets were not rescued by addition of MnCl(2), which elicits α(IIb)ß(3) outside-in signaling in the absence of inside-out signaling. Thus, our results reveal two different activation mechanisms of Rap1b as well as novel functions of Rap1b in platelet secretion and in integrin α(IIb)ß(3) outside-in signaling.


Assuntos
Plaquetas/metabolismo , Retração do Coágulo/fisiologia , Adesividade Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Proteínas rap de Ligação ao GTP/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Quelantes/farmacologia , Retração do Coágulo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Fibrinogênio/metabolismo , Indóis/farmacologia , Camundongos , Camundongos Mutantes , Selectina-P/genética , Selectina-P/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Pirimidinas/farmacologia , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/genética
14.
J Thromb Haemost ; 8(9): 2032-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20586915

RESUMO

BACKGROUND: The serine-threonine kinase Akt plays an important role in regulating platelet activation. Stimulation of platelets with various agonists results in Akt activation as indicated by Akt phosphorylation. However, the mechanisms of Akt phosphorylation in platelets are not completely understood. OBJECTIVES AND METHODS: We used P2Y1 knockout mice to address the role of P2Y12 in Akt phosphorylation in response to thrombin receptors in platelets. RESULTS: Thrombin or the PAR4 thrombin receptor peptide AYPGKF at high concentrations stimulated substantial phosphorylation of Akt residues Thr³°8 and Ser47³ in P2Y12-deficient platelets. AYPGKF-induced Akt phosphorylation is enhanced by expression of recombinant human PAR4 cDNA in Chinese hamster ovary (CHO) cells. P2Y12 -independent Akt phosphorylation was not inhibited by integrin inhibitor peptide RGDS or integrin ß3 deficiency. Akt phosphorylation induced by thrombin or AYPGKF in P2Y12-deficient platelets was inhibited by the calcium chelator dimethyl-BAPTA, the Src family kinase inhibitor PP2, and PI3K inhibitors, respectively. CONCLUSIONS: Our results reveal a novel P2Y12-independent signaling pathway mediating Akt phosphorylation in response to thrombin receptors.


Assuntos
Plaquetas/citologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Plaquetas/metabolismo , Células CHO , Quelantes/farmacologia , Cricetinae , Cricetulus , DNA Complementar/metabolismo , Humanos , Camundongos , Camundongos Knockout , Peptídeos/química , Fosforilação , Receptores Purinérgicos P2Y12/genética , Proteínas Recombinantes/química , Serina/química , Trombina/química
15.
Blood ; 116(14): 2579-81, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20554973

RESUMO

Phosphatidylinositol 3-kinase (PI3K) has been shown to play an important role in collagen-induced platelet activation, but the role(s) of PTEN, a major regulator of the PI3K/Akt signaling pathway, has not been examined in platelets. Here, we report that Pten(-/-) mouse blood contains 25% more platelets than Pten(+/+) blood and that PTEN deficiency significantly shortened the bleeding time, increased the sensitivity of platelets to collagen-induced activation and aggregation, and enhanced phosphorylation of Akt at Ser473 in response to collagen. Furthermore, we found that PP2, and the combination of apyrase, indomethacin + 1B5, respectively, inhibited collagen-induced aggregation in both PTEN(+/+) and PTEN(-/-) platelets. In contrast, LY294002 (a PI3K inhibitor) prevented the aggregation of PTEN(+/+), but not PTEN(-/-), platelets. Therefore, PTEN apparently regulates collagen-induced platelet activation through PI3K/Akt-dependent and -independent signaling pathways.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Ativação Plaquetária , Animais , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo
16.
Blood ; 114(27): 5541-6, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19808696

RESUMO

Platelet-type von Willebrand disease (PT-VWD) is a bleeding disorder of the platelet glycoprotein Ib-IX/von Willebrand factor (VWF) axis caused by mutations in the glycoprotein Ib-IX receptor that lead to an increased affinity with VWF. In this report, platelets from a mouse expressing a mutation associated with PT-VWD have been visualized using state-of-the art image collection and processing. Confocal analysis revealed that VWF bound to the surface of single platelets and bridging micro-aggregates of platelets. Surface-bound VWF appears as a large, linear structure on the surface of 50% of the PT-VWD platelets. In vivo thrombus formation after chemical injury to the carotid artery revealed a severe impairment to occlusion as a consequence of the PT-VWD mutation. In vitro stimulation of PT-VWD platelets with adenosine diphosphate or thrombin demonstrates a significant block in their ability to bind fibrinogen. The impairment of in vivo thrombus formation and in vitro fibrinogen binding are more significant than might be expected from the observed platelet binding to VWF polymers over a small portion of the plasma membrane. Visualization of the receptor/ligand interaction and characterization of a severe antithrombotic phenotype provide a new understanding on the molecular basis of bleeding associated with the PT-VWD phenotype.


Assuntos
Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Doenças de von Willebrand/genética , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Lesões das Artérias Carótidas/complicações , Feminino , Fibrinogênio/metabolismo , Citometria de Fluxo , Humanos , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Trombose/etiologia , Doenças de von Willebrand/sangue , Doenças de von Willebrand/metabolismo
17.
J Thromb Haemost ; 6(11): 1915-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18752568

RESUMO

BACKGROUND: A signaling pathway is difficult, if not impossible, to elucidate in platelets using only in vivo studies. Likewise, the physiological significance of signaling information obtained exclusively from in vitro observations is unknown. Therefore, both in vitro and in vivo experiments are required to establish the physiological significance of a signaling pathway. OBJECTIVE: To evaluate the physiological significance of signaling data obtained from botrocetin (bt)/von Willebrand factor (VWF)-stimulated washed platelets. METHOD: Stable thrombus formation in response to FeCl(3)-induced injury of the mouse carotid artery was used to evaluate the physiological significance of signaling data obtained from bt/VWF-stimulated washed platelets. RESULTS: Syk, PLCgamma2, Galphaq and P2Y12, but not LAT, were found either to be required for or to affect stable thrombus formation. Prior in vitro studies had demonstrated that LAT is not required for bt/VWF-induced platelet aggregation in the presence of exogenous fibrinogen. These data provide the first demonstration of the in vivo role for these signaling molecules in GPIb-dependent/initiated signal transduction and are consistent with the signaling pathway deduced from in vitro studies of bt/VWF-stimulated washed platelets using metabolic inhibitors and knockout mice. CONCLUSION: The broad agreement between the in vitro and the in vivo results establish that bt/VWF stimulation of washed platelets can provide physiologically significant glycoprotein Ib-dependent/initiated signaling data.


Assuntos
Venenos de Crotalídeos/farmacocinética , Transdução de Sinais , Fator de von Willebrand/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Plaquetas , Trombose das Artérias Carótidas , Células Cultivadas , Modelos Animais de Doenças , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Hemaglutininas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Fosfolipase C gama , Fosfoproteínas , Complexo Glicoproteico GPIb-IX de Plaquetas , Proteínas Tirosina Quinases , Receptores Purinérgicos P2 , Receptores Purinérgicos P2Y12 , Quinase Syk
19.
J Thromb Haemost ; 6(4): 684-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18339097

RESUMO

BACKGROUND: Platelet glycoprotein (GP) Ib-IX-V supports platelet adhesion on damaged vascular walls by binding to von Willebrand factor (VWF). For several decades it has been recognized that the alpha-subunit of GP (GPIbalpha) also binds thrombin but the physiological relevance, if any, of this interaction was unknown. Previous studies have shown that a sulfated tyrosine 276 (Tyr276) is essential for thrombin binding to GPIbalpha. OBJECTIVES: This study investigated the in vivo relevance of GPIbalpha residue Tyr276 in hemostasis and thrombosis. METHODS: Transgenic mouse colonies expressing the normal human GPIbalpha subunit or a mutant human GPIbalpha containing a Phe substitution for Tyr276 (hTg(Y276F)) were generated. Both colonies were bred to mice devoid of murine GPIbalpha. RESULTS: Surface-expressed GPIbalpha levels and platelet counts were similar in both colonies. hTg(Y276F) platelets were significantly impaired in binding alpha-thrombin but displayed normal binding to type I fibrillar collagen and human VWF in the presence of ristocetin. In vivo thrombus formation as a result of chemical damage (FeCl(3)) demonstrated that hTg(Y276F) mice have a delayed time to occlusion followed by unstable blood flow indicative of embolization. In models of laser-induced injury, thrombi developing in hTg(Y276F) animals were also less stable. CONCLUSIONS: The results demonstrate that GPIbalpha residue Tyr276 is physiologically important, supporting stable thrombus formation in vivo.


Assuntos
Coagulação Sanguínea/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Tirosina/fisiologia , Substituição de Aminoácidos , Animais , Tempo de Sangramento , Trombose das Artérias Carótidas/sangue , Trombose das Artérias Carótidas/induzido quimicamente , Trombose das Artérias Carótidas/etiologia , Trombose das Artérias Carótidas/genética , Cloretos , Colágeno Tipo I/metabolismo , Compostos Férricos/toxicidade , Humanos , Lasers/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Agregação Plaquetária , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/fisiologia , Mutação Puntual , Ristocetina/farmacologia , Trombina/metabolismo , Fator de von Willebrand/metabolismo
20.
Proc Natl Acad Sci U S A ; 104(21): 9024-8, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17494758

RESUMO

The platelet paradigm in hemostasis and thrombosis involves an initiation step that depends on platelet membrane receptors binding to ligands on a damaged or inflamed vascular surface. Once bound to the surface, platelets provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin-rich network produced by coagulation factors. The platelet-specific receptor glycoprotein (GP) Ib-IX, is critical in this process and initiates the formation of a platelet-rich thrombus by tethering the platelet to a thrombogenic surface. A role for platelets beyond the hemostasis/thrombosis paradigm is emerging with significant platelet contributions in both tumorigenesis and inflammation. We have established congenic (N10) mouse colonies (C57BL/6J) with dysfunctional GP Ib-IX receptors in our laboratory that allow us an opportunity to examine the relevance of platelet GP Ib-IX in syngeneic mouse models of experimental metastasis. Our results demonstrate platelet GP Ib-IX contributes to experimental metastasis because a functional absence of GP Ib-IX correlates with a 15-fold reduction in the number of lung metastatic foci using B16F10.1 melanoma cells. The results demonstrate that the extracellular domain of the alpha-subunit of GP Ib is the structurally relevant component of the GP Ib-IX complex contributing to metastasis. Our results support the hypothesis that platelet GP Ib-IX functions that support normal hemostasis or pathologic thrombosis also contribute to tumor malignancy.


Assuntos
Plaquetas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Deleção de Genes , Humanos , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Ligação Proteica , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...