Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005303

RESUMO

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Multiple injury models have been developed to study this neurological disorder. One such model is the lateral fluid-percussion injury (LFPI) rodent model. The LFPI model can be generated with different surgical procedures that could affect the injury and be reflected in neurobehavioral dysfunction and acute EEG changes. A craniectomy was performed either with a trephine hand drill or with a trephine electric drill that was centered over the left hemisphere of adult, male Sprague Dawley rats. Sham craniectomy groups were assessed by hand-drilled (ShamHMRI) and electric-drilled (ShamEMRI) to evaluate by MRI. Then, TBI was induced in separate groups (TBIH) and (TBIE) using a fluid-percussion device. Sham-injured rats (ShamH/ShamE) underwent the same surgical procedures as the TBI rats. During the same surgery session, rats were implanted with screw and microwire electrodes positioned in the neocortex and hippocampus and the EEG activity was recorded 24 hours for the first 7 days after TBI for assessing the acute EEG seizure and Gamma Event Coupling (GEC). The electric drilling craniectomy induced greater tissue damage and sensorimotor deficits compared to the hand drill. Analysis of the EEG revealed acute seizures in at least one animal from each group after the procedure. Both TBI and Sham rats from the electric drill groups had a significant greater total number of seizures than the animals that were craniectomized manually (p<0.05). Similarly, EEG functional connectivity was lower in ShamE compared to ShamH rats. These results suggest that electrical versus hand drilling craniectomies produce cortical injury in addition to the LFPI which increases the likelihood for acute post-traumatic seizures. Differences in the surgical approach could be one reason for the variability in the injury that makes it difficult to replicate results between preclinical TBI studies.

2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895342

RESUMO

Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement: The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.

3.
PLoS One ; 19(5): e0303420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739625

RESUMO

INTRODUCTION: Studies indicate that individuals with chronic conditions and specific baseline characteristics may not mount a robust humoral antibody response to SARS-CoV-2 vaccines. In this paper, we used data from the Texas Coronavirus Antibody REsponse Survey (Texas CARES), a longitudinal state-wide seroprevalence program that has enrolled more than 90,000 participants, to evaluate the role of chronic diseases as the potential risk factors of non-response to SARS-CoV-2 vaccines in a large epidemiologic cohort. METHODS: A participant needed to complete an online survey and a blood draw to test for SARS-CoV-2 circulating plasma antibodies at four-time points spaced at least three months apart. Chronic disease predictors of vaccine non-response are evaluated using logistic regression with non-response as the outcome and each chronic disease + age as the predictors. RESULTS: As of April 24, 2023, 18,240 participants met the inclusion criteria; 0.58% (N = 105) of these are non-responders. Adjusting for age, our results show that participants with self-reported immunocompromised status, kidney disease, cancer, and "other" non-specified comorbidity were 15.43, 5.11, 2.59, and 3.13 times more likely to fail to mount a complete response to a vaccine, respectively. Furthermore, having two or more chronic diseases doubled the prevalence of non-response. CONCLUSION: Consistent with smaller targeted studies, a large epidemiologic cohort bears the same conclusion and demonstrates immunocompromised, cancer, kidney disease, and the number of diseases are associated with vaccine non-response. This study suggests that those individuals, with chronic diseases with the potential to affect their immune system response, may need increased doses or repeated doses of COVID-19 vaccines to develop a protective antibody level.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Pessoa de Meia-Idade , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Adulto , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Idoso , Texas/epidemiologia , Doença Crônica , Estudos Soroepidemiológicos , Adulto Jovem , Fatores de Risco
4.
J Neural Eng ; 21(3)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722308

RESUMO

Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Animais , Ratos , Algoritmos , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Software , Humanos , Hipocampo/fisiologia
5.
Nanomedicine ; 58: 102749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719107

RESUMO

New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.


Assuntos
Nanoestruturas , Oligodesoxirribonucleotídeos , Ovalbumina , Vacinas de Subunidades Antigênicas , Animais , Nanoestruturas/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacocinética , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacocinética , Ovalbumina/imunologia , Ovalbumina/química , Feminino , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Interferon gama/metabolismo , Distribuição Tecidual , Ácido Ascórbico/análogos & derivados
6.
Cell Death Dis ; 15(4): 243, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570521

RESUMO

The etiopathology of Parkinson's disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Fibroblastos/metabolismo , Doenças Mitocondriais/metabolismo
7.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676053

RESUMO

Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning. A rigorous and systematic search of major academic databases, including Google Scholar and Scopus, was conducted in accordance with the PRISMA guidelines. Relevant studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for methodological quality and bias using established tools. The process of data extraction and synthesis followed a structured framework. Key findings include the shift from theoretical exploration to practical implementation, with EEG being the predominant measurement, aiming to explore mental states, physiological constructs, and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as an important resource for educators and a tool for students. Their application has the potential to transform and optimize academic practices through sensors that capture biometric data, enabling the implementation of metrics and models to understand the development and performance of students and professors in an academic environment, as well as to gain insights into the learning process.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Educação , Estudantes , Aprendizagem
8.
Cureus ; 16(2): e53469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435179

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant genetic disorder of the small arteries that causes ischemic vascular events, subcortical dementia, behavioral changes, and migraine-like headaches. It is caused by a mutation in the NOTCH3 gene; this disease was first described in 1955 by van Bogaert. We present a 29-year-old woman who presented to the neurology department. She has no history of chronic degenerative diseases. She has been complaining of migraine-like headaches for the past six months. She has cognitive impairment with arithmetic and executive function deficits on neurological examination. Blood biometry and blood chemistry are within normal parameters in her laboratory studies. A viral panel and immunological profile were also performed and were not reactive. A lumbar puncture was performed, and the composition of the cerebrospinal fluid was within normal limits. An MRI was performed, which showed bilateral and symmetric white matter hyperintensities consistent with CADASIL syndrome. There is no specific treatment. Management of these patients is based on symptom control. Neurological sequelae have an important impact on the quality of life and mortality of these patients. For this reason, pharmacological preventive therapies have been sought with controversial evidence.

9.
Arch Bronconeumol ; 60(5): 285-295, 2024 May.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38521646

RESUMO

Acute respiratory failure due to COVID-19 pneumonia often requires a comprehensive approach that includes non-pharmacological strategies such as non-invasive support (including positive pressure modes, high flow therapy or awake proning) in addition to oxygen therapy, with the primary goal of avoiding endotracheal intubation. Clinical issues such as determining the optimal time to initiate non-invasive support, choosing the most appropriate modality (based not only on the acute clinical picture but also on comorbidities), establishing criteria for recognition of treatment failure and strategies to follow in this setting (including palliative care), or implementing de-escalation procedures when improvement occurs are of paramount importance in the ongoing management of severe COVID-19 cases. Organizational issues, such as the most appropriate setting for management and monitoring of the severe COVID-19 patient or protective measures to prevent virus spread to healthcare workers in the presence of aerosol-generating procedures, should also be considered. While many early clinical guidelines during the pandemic were based on previous experience with acute respiratory distress syndrome, the landscape has evolved since then. Today, we have a wealth of high-quality studies that support evidence-based recommendations to address these complex issues. This document, the result of a collaborative effort between four leading scientific societies (SEDAR, SEMES, SEMICYUC, SEPAR), draws on the experience of 25 experts in the field to synthesize knowledge to address pertinent clinical questions and refine the approach to patient care in the face of the challenges posed by severe COVID-19 infection.


Assuntos
COVID-19 , Ventilação não Invasiva , Humanos , COVID-19/complicações , COVID-19/terapia , Insuficiência Respiratória/terapia , Insuficiência Respiratória/etiologia , Oxigenoterapia , Consenso , SARS-CoV-2 , Pandemias , Comunicação Interdisciplinar , Respiração com Pressão Positiva
10.
Inorg Chem ; 63(11): 5040-5051, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38428017

RESUMO

The effect of Eu doping in the Tsai quasicrystal (QC) GdCd7.88 and its periodic 1/1 approximant crystal (AC) GdCd6 are investigated. This represents the first synthesis of Eu-containing stable QC samples, where three samples with the final composition Gd1-xEuxCd7.6±α at Eu doping concentrations x = 0.06, 0.13, and 0.19 are obtained (α ∼ 0.2). They are compared to two 1/1 ACs with compositions Gd1-xEuxCd6 (x = 0.12, 0.16). In addition, a new type of 1/1 AC, differing only by the inclusion of extra Cd sites unique to the Eu4Cd25 1/1 AC, has been discovered and synthesized for the concentrations Gd1-xEuxCd6+δ (x = 0.25, 0.33, 0.45, 0.69, 0.73, and 0 < δ ≤ 0.085). Due to the preferred cube morphology of its single grains, we refer to them as c-type 1/1 ACs and to the conventional standard ones as s-type. In both QCs and s-type ACs, the Eu content appears to saturate at a concentration of ∼20%. On the other hand, any Gd| Eu ratio is allowed in the c-type ACs, varying continuously between GdCd6 and Eu4Cd25. We describe and contrast the changes in composition, atomic structure, specific heat, and magnetic properties induced by Eu doping in the quasicrystalline phase and the s-type and c-type 1/1 ACs. By comparing our results to the literature data, we propose that the occupancy of the extra Cd sites can be used to predict the stability of Tsai-type quasicrystalline phases.

11.
Brain Behav Immun ; 117: 399-411, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309639

RESUMO

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Autoimunidade , Encefalite , Doença de Hashimoto , Animais , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos Retrospectivos , Autoanticorpos , Convulsões , Mamíferos , Canal de Potássio Kv1.2
12.
Am J Med Genet A ; 194(5): e63523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38164622

RESUMO

The FMR1 5' regulation gene region harbors a CGG trinucleotide repeat expansion (CGG-TRE) that causes Fragile X syndrome (FXS) when it expands to more than 200 repetitions. Ricaurte is a small village in southwestern Colombia, with an FXS prevalence of 1 in 38 men and 1 in 100 women (~100 times higher than the worldwide reported prevalence), defining Ricaurte as the largest FXS cluster in the world. In the present study, using next-generation sequencing of whole exome capture, we genotype 55 individuals from Ricaurte (49 with either full mutation or with premutation), four individuals from neighboring villages (with either the full mutation or with the premutation), and one unaffected woman, native of Ricaurte, who did not belong to any of the affected families. With advanced clustering and haplotype reconstruction, we modeled a common haplotype of 33 SNPs spanning 83,567,899 bp and harboring the FMR1 gene. This reconstructed haplotype was found in all the men from Ricaurte who carried the expansion, demonstrating that the genetic conglomerate of FXS in this population is due to a founder effect. The definition of this founder effect and its population outlining will allow a better prediction, follow-up, precise and personalized characterization of epidemiological parameters, better knowledge of the disease's natural history, and confident improvement of the clinical attention, life quality, and health interventions for this community.


Assuntos
Síndrome do Cromossomo X Frágil , Masculino , Humanos , Feminino , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Efeito Fundador , Epidemiologia Molecular , Proteína do X Frágil da Deficiência Intelectual/genética , Expansão das Repetições de Trinucleotídeos , Mutação
13.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052475

RESUMO

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Convulsões
14.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056191

RESUMO

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como Assunto
15.
Repert. med. cir ; 33(2): 216-223, 2024. ilus, tab, graf
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-1561182

RESUMO

Objetivo: presentar los avances diagnósticos, moleculares y radiológicos, así como en las estrategias terapéuticas para gliomas difusos en los últimos 5 años (2018-2023) en la Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá D.C., Colombia. Materiales y métodos: se describen las técnicas diagnósticas y terapéuticas utilizadas para gliomas difusos con casos ilustrativos. Resultados: se muestran los avances de las herramientas diagnósticas y terapéuticas para el manejo de gliomas difusos. Discusión: en los últimos 5 años se ha avanzado en la clasificación, diagnóstico y tratamiento de los gliomas difusos, gracias a los avances tecnológicos como los marcadores moleculares, la tractografía y la fusión de imágenes para la neuronavegación y las técnicas de estimulación cortical. Esto ha permitido que el tratamiento de los pacientes con dichos tumores mejore la tasa de morbilidad, la calidad de vida libre de enfermedad y la supervivencia global. Conclusiones: las técnicas de diagnóstico como la tractografía, la fusión integral de imágenes intraoperatorias y el mapeo cerebral electrofisiológico con estimulación cortical y subcortical han mejorado el diagnóstico y tratamiento de los gliomas difusos.


Objective: to present the diagnostic, molecular, radiological, and therapeutic advances, to address diffuse gliomas, made at Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá D.C., Colombia, in the last 5 years (2018-2023). Materials and methods: diagnostic and therapeutic techniques to address diffuse gliomas are described through illustrative cases. Results: the advances in diagnostic and therapeutic tools for managing diffuse gliomas, are shown. Discussion: in the last 5 years progress in characterizing, diagnosing, and treating diffuse gliomas, thanks to technological breakthroughs, such as molecular markers, tractography, image fusion for neuronavigation, and cortical stimulation techniques, has been achieved. This has allowed improving morbidity rate, disease-free quality of life and overall survival through the treatment provided to patients afflicted with gliomas. Conclusions: Diagnostic techniques based on tractography, comprehensive intraoperative image fusion, and electrophysiological brain mapping with cortical and subcortical stimulation, have improved the diagnostic and therapeutic approaches for diffuse gliomas.


Assuntos
Humanos
17.
J Clin Med ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37892675

RESUMO

INTRODUCTION: The objective of this study is to assess the failure of therapies with HFNO (high-flow nasal oxygen), CPAP, Bilevel, or combined therapy in patients with hypoxemic acute respiratory failure due to SARS-CoV-2 during their hospitalization. METHODS: This was a retrospective and observational study of SARS-CoV-2-positive patients who required non-invasive respiratory support (NIRS) at the Reina Sofía General University Hospital of Murcia between March 2020 and May 2021. RESULTS: Of 7355 patients, 197 (11.8%) were included; 95 of them failed this therapy (48.3%). We found that during hospitalization in the ward, the combined therapy of HFNO and CPAP had an overall lower failure rate and the highest treatment with Bilevel (p = 0.005). In the comparison of failure in therapy without two levels of airway pressure, HFNO, CPAP, and combined therapy of HFNO with CPAP, (35.6% of patients) presented with 24.2% failure, compared to those who had two levels of pressure with Bilevel and combined therapy of HFNO with Bilevel (64.4% of patients), with 75.8% associated failure (OR: 0, 374; CI 95%: 0.203-0.688. p = 0.001). CONCLUSIONS: The use of NIRS during conventional hospitalization is safe and effective in patients with respiratory failure secondary to SARS-CoV-2 infection. The therapeutic strategy of Bilevel increases the probability of failure, with the combined therapy strategy of CPAP and HFNO being the most promising option.

18.
Brain Behav Immun Health ; 33: 100678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37692096

RESUMO

Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

19.
Inorg Chem ; 62(36): 14668-14677, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642644

RESUMO

Gd14AuxAl86-x Tsai-type 1/1 quasicrystal approximants (ACs) exhibit three magnetic orders that can be finely tuned by the valence electron concentration (e/a ratio). This parameter has been considered to be crucial for controlling the long-range magnetic order in quasicrystals (QCs) and ACs. However, the nonlinear trend of the lattice parameter as a function of Au concentration suggests that Gd14AuxAl86-x 1/1 ACs are not following a conventional solid solution behavior. We investigated Gd14AuxAl86-x samples with x values of 52, 53, 56, 61, 66, and 73 by single-crystal X-ray diffraction. Our analysis reveals that increasing Au/Al ordering with increasing x leads to distortions in the icosahedral shell built of the Gd atoms and that trends observed in the interatomic Gd-Gd distances closely correlate with the magnetic property changes across different x values. Our results demonstrate that the e/a ratio alone may be an oversimplified concept for investigating the long-range magnetic order in 1/1 ACs and QCs and that the mixing behavior of the nonmagnetic elements Au and Al plays a significant role in influencing the magnetic behavior of the Gd14AuxAl86-x 1/1 AC system. These findings will contribute to improved understanding towards tailoring magnetic properties in emerging materials.

20.
J Food Sci Technol ; 60(10): 2659-2669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37599839

RESUMO

Pathogenic bacteria in food are a public health problem worldwide. Polyphenolic bioactive compounds with antimicrobial activity and antioxidant capacity represent a tangible alternative to overcome this problem. To preserve the biological functions of phenolic compounds such as tannic acid, which has been described to possess antioxidant and antimicrobial activity, this study describes the synthesis of a zinc nanohydroxide to stabilize its properties. Characterization by XRD, FT-IR, SEM, DLS, and UV-vis evidenced the presence of tannic acid in the nanohybrid TA-Zn-LHS which was further confirmed by DPPH, ABTS and FRAP antioxidant activity techniques. Bacterial growth inhibition of Escherichia coli ATCC 8739, Salmonella Enteritidis, and Staphylococcus aureus ATCC 25923 was over 80% at 50 mg/mL of the TA-Zn-LHS and over 90% with Zn-LHS. Antibiofilm evaluation of these same strains showed biofilm formation inhibition > 90% and > 80% for Zn-LHS and TA-Zn-LHS, respectively. The toxicity evaluation of the materials in Artemia salina showed a classification of the materials as non-toxic to slightly toxic in concentrations up to 1 mg/mL. These results allow us to introduce a new nanohybrid useful for food safety with safe biological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...