Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(43): 15544-15555, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37920799

RESUMO

The development of efficient catalysts for the chemical recycling of poly(ethylene terephthalate) (PET) is essential to tackling the global issue of plastic waste. There has been intense interest in heterogeneous catalysts as a sustainable catalyst system for PET depolymerization, having the advantage of easy separation and reuse after the reaction. In this work, we explore heterogeneous catalyst design by comparing metal-ion (Fe3+) and metal-oxide nanoparticle (Fe2O3 NP) catalysts immobilized on mesoporous silica (SiO2) functionalized with different N-containing amine ligands. Quantitative solid-state nuclear magnetic resonance (NMR) spectroscopy confirms successful grafting and elucidates the bonding mode of the organic ligands on the SiO2 surface. The surface amine ligands act as organocatalysts, enhancing the catalytic activity of the active metal species. The Fe2O3 NP catalysts in the presence of organic ligands outperform bare Fe2O3 NPs, Fe3+-ion-immobilized catalysts and homogeneous FeCl3 salts, with equivalent Fe loading. X-ray photoelectron spectroscopy analysis indicates charge transfer between the amine ligands and Fe2O3 NPs and the electron-donating ability of the N groups and hydrogen bonding may also play a role in the higher performance of the amine-ligand-assisted Fe2O3 NP catalysts. Density functional theory (DFT) calculations also reveal that the reactivity of the ion-immobilized catalysts is strongly correlated to the ligand-metal binding energy and that the products in the glycolysis reaction catalyzed by the NP catalysts are stabilized, showing a significant exergonic character compared to single ion-immobilized Fe3+ ions.

2.
J Magn Reson ; 348: 107388, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36841183

RESUMO

Various two-dimensional (2D) homonuclear correlation experiments have been proposed to observe proximities between identical half-integer spin quadrupolar nuclei in solids. These experiments select either the single- or double-quantum coherences during the indirect evolution period, t1. We compare here the efficiency and the robustness of the 2D double-quantum to single-quantum (DQ-SQ) and SQ-SQ homonuclear correlations for two half-integer spin quadrupolar isotopes subject to small chemical shift anisotropy (CSA): 11B with a nuclear spin I = 3/2 and 27Al with I = 5/2. Such a comparison is performed using experiments on two model samples: Li2B4O7 for 11B and AlPO4-14 for 27Al. For both isotopes, the DQ-SQ homonuclear correlations are recommended since they allow probing the proximities between nuclei with close or identical frequencies. In the case of small or moderate isotropic chemical shift differences (e.g. 11B) the [SR221] or [BR221] bracketed DQ-SQ recoupling schemes are recommended; whereas it is the BR221 un-bracketed one otherwise (e.g. 27Al).

3.
Magn Reson (Gott) ; 2(1): 447-464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37904781

RESUMO

Half-integer spin quadrupolar nuclei are the only magnetic isotopes for the majority of the chemical elements. Therefore, the transfer of polarization from protons to these isotopes under magic-angle spinning (MAS) can provide precious insights into the interatomic proximities in hydrogen-containing solids, including organic, hybrid, nanostructured and biological solids. This transfer has recently been combined with dynamic nuclear polarization (DNP) in order to enhance the NMR signal of half-integer quadrupolar isotopes. However, the cross-polarization transfer lacks robustness in the case of quadrupolar nuclei, and we have recently introduced as an alternative technique a D-RINEPT (through-space refocused insensitive nuclei enhancement by polarization transfer) scheme combining a heteronuclear dipolar recoupling built from adiabatic pulses and a continuous-wave decoupling. This technique has been demonstrated at 9.4 T with moderate MAS frequencies, νR≈10-15 kHz, in order to transfer the DNP-enhanced 1H polarization to quadrupolar nuclei. Nevertheless, polarization transfers from protons to quadrupolar nuclei are also required at higher MAS frequencies in order to improve the 1H resolution. We investigate here how this transfer can be achieved at νR≈20 and 60 kHz. We demonstrate that the D-RINEPT sequence using adiabatic pulses still produces efficient and robust transfers but requires large radio-frequency (rf) fields, which may not be compatible with the specifications of most MAS probes. As an alternative, we introduce robust and efficient variants of the D-RINEPT and PRESTO (phase-shifted recoupling effects a smooth transfer of order) sequences using symmetry-based recoupling schemes built from single and composite π pulses. Their performances are compared using the average Hamiltonian theory and experiments at B0=18.8 T on γ-alumina and isopropylamine-templated microporous aluminophosphate (AlPO4-14), featuring low and significant 1H-1H dipolar interactions, respectively. These experiments demonstrate that the 1H magnetization can be efficiently transferred to 27Al nuclei using D-RINEPT with SR412(270090180) recoupling and using PRESTO with R2227(1800) or R1676(270090180) schemes at νR=20 or 62.5 kHz, respectively. The D-RINEPT and PRESTO recoupling schemes complement each other since the latter is affected by dipolar truncation, whereas the former is not. We also analyze the losses during these recoupling schemes, and we show how these magnetization transfers can be used at νR=62.5 kHz to acquire in 72 min 2D HETCOR (heteronuclear correlation) spectra between 1H and quadrupolar nuclei, with a non-uniform sampling (NUS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...