Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1426388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015137

RESUMO

Introduction: The formation of bacterial biofilms on knee arthroplasty implants can have catastrophic consequences. The aim of this study was to analyze the effectiveness of the bioelectric effect in the elimination of bacterial biofilms on cultivated knee arthroplasty implants. Methods: A novel device was designed to deliver a bioelectric effect on the surface of knee arthroplasty implants. 4-femoral prosthetic implants were cultivated with a staphylococcus aureus inoculum for 15 days. The components were divided into four different groups: A (not treated), B (normal saline 20-minutes), C (bioelectric effect 10-minutes), D (bioelectric effect 20-minutes). The implants were sonicated, and the detached colonies were quantified as the number of colony-forming unit (CFUs). The implants were sterilised and the process was repeated in a standardized manner four more times, to obtain a total of five samples per group. Results: The number of the CFUs after a 10-minute exposure to the bioelectric effect was of 208.2 ± 240.4, compared with 6,041.6 ± 2010.7 CFUs in group A, representing a decrease of 96.5% ± 4.3 (p = 0.004). And a diminution of 91.8% ± 7.9 compared with 2,051.0 ± 1,364.0 CFUs in group B (p = 0.109). The number of bacterial colonies after a 20-minute exposure to the bioelectric effect was 70 ± 126.7 CFUs, representing a decrease of 98.9% ± 1.9 (p = 0.000) compared with group A. And a decrease of 97.8% ± 3.0 (p = 0.019) compared with group B. Conclusions: The bioelectric effect was effective in the elimination of bacterial biofilm from knee arthroplasty implants. This method could be used in the future as part of conventional surgical procedures.

2.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336255

RESUMO

Rollators are widely used in clinical rehabilitation for gait assessment, but gait analysis usually requires a great deal of expertise and focus from medical staff. Smart rollators can capture gait parameters autonomously while avoiding complex setups. However, commercial smart rollators, as closed systems, can not be modified; plus, they are often expensive and not widely available. This work presents a low cost open-source modular rollator for monitorization of gait parameters and support. The whole system is based on commercial components and its software architecture runs over ROS2 to allow further customization and expansion. This paper describes the overall software and hardware architecture and, as an example of extended capabilities, modules for monitoring dynamic partial weight bearing and for estimation of spatiotemporal gait parameters of clinical interest. All presented tests are coherent from a clinical point of view and consistent with input data.


Assuntos
Marcha , Caminhada , Análise da Marcha , Humanos , Monitorização Fisiológica , Software
3.
Orthop J Sports Med ; 9(9): 23259671211027543, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568504

RESUMO

BACKGROUND: Supervised machine learning models in artificial intelligence (AI) have been increasingly used to predict different types of events. However, their use in orthopaedic surgery has been limited. HYPOTHESIS: It was hypothesized that supervised learning techniques could be used to build a mathematical model to predict primary anterior cruciate ligament (ACL) injuries using a set of morphological features of the knee. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Included were 50 adults who had undergone primary ACL reconstruction between 2008 and 2015. All patients were between 18 and 40 years of age at the time of surgery. Patients with a previous ACL injury, multiligament knee injury, previous ACL reconstruction, history of ACL revision surgery, complete meniscectomy, infection, missing data, and associated fracture were excluded. We also identified 50 sex-matched controls who had not sustained an ACL injury. For all participants, we used the preoperative magnetic resonance images to measure the anteroposterior lengths of the medial and lateral tibial plateaus as well as the lateral and medial bone slope (LBS and MBS), lateral and medial meniscal height (LMH and MMH), and lateral and medial meniscal slope (LMS and MMS). The AI predictor was created using Matlab R2019b. A Gaussian naïve Bayes model was selected to create the predictor. RESULTS: Patients in the ACL injury group had a significantly increased posterior LBS (7.0° ± 4.7° vs 3.9° ± 5.4°; P = .008) and LMS (-1.7° ± 4.8° vs -4.0° ± 4.2°; P = .002) and a lower MMH (5.5 ± 0.1 vs 6.1 ± 0.1 mm; P = .006) and LMH (6.9 ± 0.1 vs 7.6 ± 0.1 mm; P = .001). The AI model selected LBS and MBS as the best possible predictive combination, achieving 70% validation accuracy and 92% testing accuracy. CONCLUSION: A prediction model for primary ACL injury, created using machine learning techniques, achieved a >90% testing accuracy. Compared with patients who did not sustain an ACL injury, patients with torn ACLs had an increased posterior LBS and LMS and a lower MMH and LMH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...