Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(11): 2291-2299.e10, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137308

RESUMO

During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.


Assuntos
Caenorhabditis elegans , Cinetocoros , Animais , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Caenorhabditis elegans/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centers for Disease Control and Prevention, U.S. , Cinetocoros/metabolismo , Mitose , Fuso Acromático/metabolismo , Estados Unidos
2.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399854

RESUMO

Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) is recruited to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion. Here, we show that in addition to controlling PCM expansion, PLK1 independently controls the generation of binding sites for γ-tubulin complexes on the PCM matrix. Selectively preventing the generation of PLK1-dependent γ-tubulin docking sites led to spindle defects and impaired chromosome segregation without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites recapitulated the effects of loss of centrosomal PLK1 on the ability of centrosomes to catalyze spindle assembly.


Assuntos
Caenorhabditis elegans/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Fuso Acromático/metabolismo , Transgenes , Tubulina (Proteína)/metabolismo
3.
Curr Biol ; 30(16): 3101-3115.e11, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619481

RESUMO

Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved "canonical" residues in ECT2's BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinese , Fosfopeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Proteína BRCA1/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Fosfopeptídeos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fuso Acromático , Proteína rhoA de Ligação ao GTP/genética , Quinase 1 Polo-Like
4.
Elife ; 72018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989548

RESUMO

Throughout metazoans, germ cells undergo incomplete cytokinesis to form syncytia connected by intercellular bridges. Gamete formation ultimately requires bridge closure, yet how bridges are reactivated to close is not known. The most conserved bridge component is centralspindlin, a complex of the Rho family GTPase-activating protein (GAP) CYK-4/MgcRacGAP and the microtubule motor ZEN-4/kinesin-6. Here, we show that oocyte production by the syncytial Caenorhabditis elegans germline requires CYK-4 but not ZEN-4, which contrasts with cytokinesis, where both are essential. Longitudinal imaging after conditional inactivation revealed that CYK-4 activity is important for oocyte cellularization, but not for the cytokinesis-like events that generate syncytial compartments. CYK-4's lipid-binding C1 domain and the GTPase-binding interface of its GAP domain were both required to target CYK-4 to intercellular bridges and to cellularize oocytes. These results suggest that the conserved C1-GAP region of CYK-4 constitutes a targeting module required for closure of intercellular bridges in germline syncytia.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células Gigantes/citologia , Cinesinas/metabolismo , Oócitos/citologia , Fuso Acromático/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Citocinese , Proteínas Ativadoras de GTPase/metabolismo , Células Germinativas/fisiologia , Células Gigantes/fisiologia , Cinesinas/genética , Morfogênese , Oócitos/fisiologia , Ligação Proteica , Proteínas rho de Ligação ao GTP/metabolismo
5.
Elife ; 72018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29963981

RESUMO

To ensure timely cytokinesis, the equatorial actomyosin contractile ring constricts at a relatively constant rate despite its progressively decreasing size. Thus, the per-unit-length constriction rate increases as ring perimeter decreases. To understand this acceleration, we monitored cortical surface and ring component dynamics during the first cytokinesis of the Caenorhabditis elegans embryo. We found that, per unit length, the amount of ring components (myosin, anillin) and the constriction rate increase with parallel exponential kinetics. Quantitative analysis of cortical flow indicated that the cortex within the ring is compressed along the axis perpendicular to the ring, and the per-unit-length rate of cortical compression increases during constriction in proportion to ring myosin. We propose that positive feedback between ring myosin and compression-driven flow of cortex into the ring drives an exponential increase in the per-unit-length amount of ring myosin to maintain a high ring constriction rate and support this proposal with an analytical mathematical model.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Retroalimentação Fisiológica/fisiologia , Mecanotransdução Celular/fisiologia , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Fenômenos Biomecânicos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Proteínas Contráteis/genética , Embrião não Mamífero , Expressão Gênica , Cinética , Miosinas/genética , Pressão , Reologia
6.
Methods Cell Biol ; 144: 185-231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29804670

RESUMO

The one-cell Caenorhabditis elegans embryo offers many advantages for mechanistic analysis of cell division processes. Conservation of key genes and pathways involved in cell division makes findings in C. elegans broadly relevant. A key technical advantage of this system is the ability to penetrantly deplete essential gene products by RNA interference (RNAi) and replace them with wild-type or mutant versions expressed at endogenous levels from single copy RNAi-resistant transgene insertions. This ability to precisely perturb essential genes is complemented by the inherently highly reproducible nature of the zygotic division that facilitates development of quantitative imaging assays. Here, we detail approaches to generate targeted single copy transgene insertions that are RNAi-resistant, to engineer variants of individual genes employing transgene insertions as well as at the endogenous locus, and to in situ tag genes with fluorophores/purification tags. We also describe imaging assays and common image analysis tools employed to quantitatively monitor phenotypic effects of specific perturbations on meiotic and mitotic chromosome segregation, centrosome assembly/function, and cortical dynamics/cytokinesis.


Assuntos
Caenorhabditis elegans/embriologia , Divisão Celular , Técnicas Citológicas/métodos , Embrião não Mamífero/citologia , Alelos , Animais , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Engenharia Genética , Microtúbulos/metabolismo , Mutação/genética , Interferência de RNA , Reprodutibilidade dos Testes , Transgenes
7.
J Cell Biol ; 208(6): 671-81, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25778917

RESUMO

Previously, we identified the nucleoporin gp210/Nup210 as a critical regulator of muscle and neuronal differentiation, but how this nucleoporin exerts its function and whether it modulates nuclear pore complex (NPC) activity remain unknown. Here, we show that gp210/Nup210 mediates muscle cell differentiation in vitro via its conserved N-terminal domain that extends into the perinuclear space. Removal of the C-terminal domain, which partially mislocalizes gp210/Nup210 away from NPCs, efficiently rescues the differentiation defect caused by the knockdown of endogenous gp210/Nup210. Unexpectedly, a gp210/Nup210 mutant lacking the NPC-targeting transmembrane and C-terminal domains is sufficient for C2C12 myoblast differentiation. We demonstrate that the endoplasmic reticulum (ER) stress-specific caspase cascade is exacerbated during Nup210 depletion and that blocking ER stress-mediated apoptosis rescues differentiation of Nup210-deficient cells. Our results suggest that the role of gp210/Nup210 in cell differentiation is mediated by its large luminal domain, which can act independently of NPC association and appears to play a pivotal role in the maintenance of nuclear envelope/ER homeostasis.


Assuntos
Diferenciação Celular , Retículo Endoplasmático/metabolismo , Homeostase , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Animais , Caspases/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Membrana Nuclear , Estrutura Terciária de Proteína , Transporte Proteico , Ratos
8.
Curr Opin Cell Biol ; 24(6): 775-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22995343

RESUMO

The Nuclear Envelope (NE) contains over 100 different proteins that associate with nuclear components such as chromatin, the lamina and the transcription machinery. Mutations in genes encoding NE proteins have been shown to result in tissue-specific defects and disease, suggesting cell-type specific differences in NE composition and function. Consistent with these observations, recent studies have revealed unexpected functions for numerous NE associated proteins during cell differentiation and development. Here we review the latest insights into the roles played by the NE in cell differentiation, development, disease and aging, focusing primarily on inner nuclear membrane (INM) proteins and nuclear pore components.


Assuntos
Doença , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Compartimento Celular , Diferenciação Celular , Cromatina/metabolismo , Humanos , Membrana Nuclear/química , Poro Nuclear/química , Poro Nuclear/metabolismo , Especificidade de Órgãos , Transdução de Sinais
9.
Dev Cell ; 22(2): 446-58, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22264802

RESUMO

Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Desenvolvimento Muscular/fisiologia , Neurônios/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Neurônios/citologia , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...