Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786005

RESUMO

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Assuntos
Fibroblastos , Glucosídeos , Mitocôndrias , Doenças Mitocondriais , Niacinamida , Estilbenos , Resposta a Proteínas não Dobradas , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estilbenos/farmacologia , Glucosídeos/farmacologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Niacinamida/farmacologia , Mutação , Fenótipo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
2.
Biomolecules ; 13(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136659

RESUMO

Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Animais , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Resposta a Proteínas não Dobradas
3.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136143

RESUMO

Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.

4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834028

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, ß-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.


Assuntos
Antioxidantes , Proteínas de Transporte , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Peroxidação de Lipídeos , Autofagia/genética , Ferro/metabolismo
5.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895830

RESUMO

The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.

6.
Orphanet J Rare Dis ; 18(1): 80, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046296

RESUMO

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS: This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS: Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS: Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.


Assuntos
Doenças Neurodegenerativas , Neurodegeneração Associada a Pantotenato-Quinase , Ácido Tióctico , Humanos , Suplementos Nutricionais , Ferro/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo
7.
Metabolites ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36984858

RESUMO

Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.

8.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674998

RESUMO

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Longevidade , Resposta a Proteínas não Dobradas
9.
Front Pharmacol ; 13: 862085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370630

RESUMO

Mitochondrial diseases are genetic disorders caused by mutations in genes in the nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) that encode mitochondrial structural or functional proteins. Although considered "rare" due to their low incidence, such diseases affect thousands of patients' lives worldwide. Despite intensive research efforts, most mitochondrial diseases are still incurable. Recent studies have proposed the modulation of cellular compensatory pathways such as mitophagy, AMP-activated protein kinase (AMPK) activation or the mitochondrial unfolded protein response (UPRmt) as novel therapeutic approaches for the treatment of these pathologies. UPRmt is an intracellular compensatory pathway that signals mitochondrial stress to the nucleus for the activation of mitochondrial proteostasis mechanisms including chaperones, proteases and antioxidants. In this work a potentially beneficial molecule, pterostilbene (a resveratrol analogue), was identified as mitochondrial booster in drug screenings. The positive effects of pterostilbene were significantly increased in combination with a mitochondrial cocktail (CoC3) consisting of: pterostilbene, nicotinamide, riboflavin, thiamine, biotin, lipoic acid and l-carnitine. CoC3 increases sirtuins' activity and UPRmt activation, thus improving pathological alterations in mutant fibroblasts and induced neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...