Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255939

RESUMO

Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.


Assuntos
Asma , Obesidade Infantil , Criança , Animais , Camundongos , Humanos , Fezes , Claudina-1 , Citocromos b , NF-kappa B
2.
Biomedicines ; 8(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961859

RESUMO

Background: Asthma is a multifactorial condition where patients with identical clinical diagnoses do not have the same clinical history or respond to treatment. This clinical heterogeneity is reflected in the definition of two main endotypes. We aimed to explore the metabolic and microbiota signatures that characterize the clinical allergic asthma phenotype in obese children. Methods: We used a multi-omics approach combining clinical data, plasma and fecal inflammatory biomarkers, metagenomics, and metabolomics data in a cohort of allergic asthmatic children. Results: We observed that the obese allergic asthmatic phenotype was markedly associated with higher levels of leptin and lower relative proportions of plasma acetate and a member from the Clostridiales order. Moreover, allergic children with a worse asthma outcome showed higher levels of large unstained cells, fecal D lactate and D/L lactate ratio, and with a higher relative proportion of plasma creatinine and an unclassified family member from the RF39 order belonging to the Mollicutes class. Otherwise, children with persistent asthma presented lower levels of plasma citrate and dimethylsulfone. Conclusion: Our integrative approach shows the molecular heterogeneity of the allergic asthma phenotype while highlighting the use of omics technologies to examine the clinical phenotype at a more holistic level.

3.
Int J Mol Sci ; 18(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696379

RESUMO

Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.


Assuntos
Asma/metabolismo , Obesidade/metabolismo , Adipocinas/sangue , Adipocinas/metabolismo , Animais , Asma/sangue , Microbioma Gastrointestinal/fisiologia , Humanos , Lipopolissacarídeos/sangue , Obesidade/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...