Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(29): 25422-25432, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910185

RESUMO

The great economic, social, and environmental interest that favors an effective management of the recycling of waste printed circuit boards (WCBs) encourages research on the improvement of processes capable of mitigating their harmful effects. In this work, the debromination of large WCBs was first performed through a hydrothermal process employing potassium carbonate as an additive. A total of 32 runs were carried out at 225 °C, various CO3 2-/Br- anionic ratios of 1:1, 2:1, 4:1, and 6:1, treatment times from 30 to 360 min, proportion of submerged WCBs in the liquid of 100, 50, and 25% that corresponded with the use of three WCB sizes of 20 mm × 16.5 mm, 20 mm × 33 mm, and 80 mm × 33 mm, respectively, and solid/liquid ratios of 1:2 and 1:1 g/mL without other metallic catalysts. A debromination efficiency of 50 wt % was reached at only 225 °C (limited by mechanical reasons) and 360 min, using a CO3 2-/Br- anionic ratio of 4:1 and a solid/liquid ratio of 1:2 for a large WCB with only 25% of its volume submerged in the liquid. This means conservation of water and energy compared to previous studies. A muffle furnace was used later to thermally treat a total of 101 debrominated samples, at constant temperature or following a temperature scaling program. An estimated decrease in resistance to rupture of glass fibers of only around 50% was accomplished by following a temperature scaling program up to 475 °C, obtaining clean glass fibers of large size. The simple techniques proposed to obtain reusable glass fibers from WCBs as large as the size of the reactor allows (as it might be in their original size) could significantly improve interest in the industry.

2.
J Environ Manage ; 317: 115431, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649335

RESUMO

An effective management of waste printed circuit board (WCB) recycling presents significant advantages of an economic, social, and environmental nature. This is particularly the case when a suitable valorisation is made of the non-metallic parts of the WCBs, well known for their "hidden" toxicological risks. Such benefits motivate research on techniques that could contribute to mitigating their adverse socio-environmental impacts. In this work, waste printed circuit boards (WCBs) containing tetrabromobisphenol A (TBBPA) as a brominated flame retardant (BFR) underwent debromination using a mechanochemical treatment (MCT) and marble sludge, another recoverable waste, as well as pure CaO as additives. All runs in this work were performed at an intermediate rotation speed of 450 rpm, using additive/WCB mass ratios (Rm) of 4:1 and 8:1, ball to powder ratios (BPR) of 20:1 and 50:1, treatment times from 2.5 h to 10 h, two WCB sizes (powder and 0.84 mm) and marble sludge, from original to precalcined conditioning. Stainless steel jars and balls were used to verify the effect of each parameter on the system and to seek an optimum process. Complete debromination of 0.84 mm WCBs was achieved at 450 rpm, using a Rm of 8:1, a BPR of 50:1, a residence time of 10 h (more than 95% in only 5 h), and a precalcined marble sludge as additive. The results revealed that when using a Rm of 4:1 instead of 8:1, more waste could be effectively treated, per batch with a lesser need for additives, at the expense of a slightly lower level of debromination efficiency. In the same way, an appropriate apparent ball diameter (with respect to the volume of the used jar) should be carefully studied in relation to WCB size in order to achieve a beneficial total amount of energy transfer during milling.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Carbonato de Cálcio , Pós , Reciclagem , Esgotos
3.
Polymers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803283

RESUMO

Persistent organic pollutant inhibition in the combustion process of polyvinyl chloride (PVC) by prior addition of an inhibitor is currently being studied, reducing the emission of pollutants, and thus reducing the large amount of waste PVC destined for landfill. In this work, the use of sewage sludge (SS) as an alternative to chemical inhibitors to improve the quality emissions of the incineration of polyvinyl chloride waste (PVC e-waste) was studied and optimized. Different combustion runs were carried out at 850 °C in a laboratory tubular reactor, varying both the molar ratio Ri (0.25, 0.50, 0.75) between inhibitors (N + S) and chlorine (Cl) and the oxygen ratio λ (0.15, 0.50) between actual oxygen and stoichiometric oxygen. The emissions of several semivolatile compounds families such as polycyclic aromatic hydrocarbons (PAHs), polychlorobenzenes (ClBzs), and polychlorophenols (ClPhs), with special interest in the emissions of the most toxic compounds, i.e., polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), were analyzed. A notable decrease in PCDD/F and dl-PCB formation was achieved in most of the experiments, especially for those runs performed under an oxygen-rich atmosphere (λ = 0.50), where the addition of sludge was beneficial with inhibition ratios Ri ≥ 0.25. An inhibition ratio of 0.75 showed the best results with almost a 100% reduction in PCDD/F formation and a 95% reduction in dl-PCB formation.

4.
Waste Manag ; 102: 204-211, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683076

RESUMO

Polyvinyl chloride (PVC) waste generation has significantly increased in recent years and their disposal is considered a major environmental concern. Removal techniques of chlorine from PVC waste are being studied to minimize a negative environmental impact. In this work, the use of K2CO3 as an alkaline additive to improve the dechlorination efficiency (DE) in the hydrothermal degradation of PVC wires was studied. Different experiments were carried out varying both temperature (175, 200, 225, 235 and 250 °C) and K2CO3 concentration (0.025, 0.050 and 0.125 M), using a solid/liquid ratio of 1:5 in order to determine the evolution of the dechlorination efficiency with time. About 4.66, 21.1, 24.4, 45.7 and 92.6 wt% of chlorine in PVC wire was removed during hydrothermal dechlorination (HTD) with an additive/chlorine ratio of 1:25 (K2CO3 solution of 0.050 M) at 175, 200, 225, 235 and 250 °C, respectively. Optimal additive/chlorine ratio decreased to 1:50 (K2CO3 solution of 0.025 M) at 250 °C, obtaining a dechlorination degree of 99.1% after 4 h without the need of metallic catalysts. Concerning the solid phase behavior during dechlorination, a linear correlation between the DE reached and the weight loss of PVC was found.


Assuntos
Cloreto de Polivinila , Água , Cloro , Halogenação , Temperatura
5.
Chemosphere ; 91(6): 797-801, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23466088

RESUMO

The use of waste wood as an energy carrier has increased during the last decade. However, elevated levels of alkali metals and chlorine in waste wood compared to virgin biomass can cause increased deposit formation and higher concentrations of organic pollutants. In this study, we investigated the effect of the ChlorOut technique on concentrations of organic pollutants. Ammonium sulfate was injected into the combustion system to inhibit formation of KCl (which causes deposits) and persistent organic pollutants, namely polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs). The results showed that concentrations of the toxic congeners of PCDD, PCDF and PCB decreased in the presence of ammonium sulfate.


Assuntos
Biomassa , Compostos Heterocíclicos/química , Resíduos Industriais , Papel , Eliminação de Resíduos/instrumentação , Sulfato de Amônio/química , Benzofuranos/química , Biocombustíveis , Dibenzofuranos Policlorados , Bifenilos Policlorados/química , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...