Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 13(11): 1968-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16543941

RESUMO

Aplidin is an antitumor agent in phase II clinical trials that induces apoptosis through the sustained activation of Jun N-terminal kinase (JNK). We report that Aplidin alters glutathione homeostasis increasing the ratio of oxidized to reduced forms (GSSG/GSH). Aplidin generates reactive oxygen species and disrupts the mitochondrial membrane potential. Exogenous GSH inhibits these effects and also JNK activation and cell death. We found two mechanisms by which Aplidin activates JNK: rapid activation of Rac1 small GTPase and downregulation of MKP-1 phosphatase. Rac1 activation was diminished by GSH and enhanced by L-buthionine (SR)-sulfoximine, which inhibits GSH synthesis. Downregulation of Rac1 by transfection of small interfering RNA (siRNA) duplexes or the use of a specific Rac1 inhibitor decreased Aplidin-induced JNK activation and cytotoxicity. Our results show that Aplidin induces apoptosis by increasing the GSSG/GSH ratio, a necessary step for induction of oxidative stress and sustained JNK activation through Rac1 activation and MKP-1 downregulation.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Depsipeptídeos/farmacologia , Dissulfeto de Glutationa/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Cobre/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fosfatase 1 de Especificidade Dupla , Ativação Enzimática/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Células HeLa , Homeostase/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Cíclicos , Proteína Fosfatase 1 , Espécies Reativas de Oxigênio/metabolismo
2.
Circ Res ; 90(5): 539-45, 2002 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-11909817

RESUMO

Endothelial dysfunction, considered as a defective vascular dilatation after certain stimuli, is characteristic of different pathological conditions, such as hypertension, atherosclerosis, or diabetes. A decreased synthesis or an increased degradation of nitric oxide (NO) has been postulated as the mechanism responsible for this alteration. The present experiments were designed to test the hypothesis that the presence of an abnormal extracellular matrix in vessel walls could be responsible for the decreased NO synthesis observed in these pathological conditions. Experiments were performed in cultured human umbilical vein endothelial cells (HUVECs) grown on type IV (Col. IV) or type I (Col. I) collagen. Cells seeded on Col. I showed decreased nitrite synthesis, nitric oxide synthase activity, eNOS protein content, and eNOS mRNA expression when compared with cells grown on Col. IV. Moreover, cells grown on Col. I failed to respond to glucose oxidase activation of the eNOS system. In both cases, the changes in the eNOS mRNA expression seemed to depend on the modulation of eNOS promoter activity. The downregulation of eNOS induced by Col. I was blocked by D6Y, a peptide that interferes with the Col. I-dependent signals through integrins, as well as by specific anti-integrin antibodies. Moreover, a decreased activation of integrin-linked kinase (ILK) may explain the effects observed in Col. I-cultured cells because the activity of this kinase was decreased in these cells and ILK modulation prevented the Col. I-induced changes in HUVECs. Taken together, these findings may contribute to explaining the basis of endothelial dysfunction in some vascular diseases.


Assuntos
Colágeno Tipo I/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Células Cultivadas , Citrulina/metabolismo , Colágeno Tipo I/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Integrinas/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III , Nitritos/metabolismo , Peptídeos/farmacologia , Regiões Promotoras Genéticas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
Free Radic Biol Med ; 32(5): 406-13, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11864780

RESUMO

Vascular injury leads to the production of reactive oxygen species (ROS), but the mechanisms by which ROS contribute to vascular pathology are not completely understood. We hypothesized that ROS increase endothelin converting enzyme (ECE-1) expression. We found that glucose oxidase (GO) increases ECE-1 mRNA, protein, and activity in bovine aortic endothelial cells. Catalase abolishes this effect. Glucose oxidase treatment of endothelial cells transactivates the ECE-1 promoter. The ECE-1 promoter element that mediates this response to GO is located between -444 and -216 bp. This region contains a STAT response element, and GO activates STAT-3 binding to this STAT response element. Our data suggest that STAT3 mediates hydrogen peroxide induction of ECE-1 expression.


Assuntos
Antioxidantes/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose Oxidase/farmacologia , Peróxido de Hidrogênio/farmacologia , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/metabolismo , Ácido Aspártico Endopeptidases/genética , Western Blotting , Catalase/metabolismo , Bovinos , Núcleo Celular , Células Cultivadas , Citosol , Primers do DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Endotelina-1/metabolismo , Enzimas Conversoras de Endotelina , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células HeLa , Humanos , Luciferases/metabolismo , Metaloendopeptidases , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Transcrição STAT3 , Deleção de Sequência , Transativadores/genética , Transativadores/metabolismo , Transfecção
4.
Life Sci ; 70(6): 699-714, 2001 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11833719

RESUMO

The importance of endothelial cell contraction in the regulation of vascular biology is being increasingly recognized. Our group has demonstrated that reactive oxygen species, particularly hydrogen peroxide, which are released in pathological conditions such as ischemia-reperfusion, are able to induce contraction in bovine aortic endothelial cells (BAEC). The cGMP-dependent relaxation of contractile cells depends on the ability of the cyclic nucleotide to interfere with intracellular calcium; however, this is not the only mechanism involved. The present experiments were designed to analyse the mechanism by which cGMP induces relaxation in BAEC. Sodium nitroprusside (SNP), an activator of soluble guanylate cyclase, as well as atrial natriuretic (ANP) and C-type natriuretic (CNP) peptides, activators of particulate guanylate cyclase, blunted the hydrogen peroxide-induced contraction of BAEC and myosin light chain phosphorylation. The inhibitory effect was more marked with SNP and CNP than with ANP, and the action of SNP and CNP were partially reversed by blocking soluble and particulate guanylate cyclases, respectively. Dibutyryl cGMP (db-cGMP), a cGMP analogue, mimicked the effect of SNP and CNP. Cyclic GMP-dependent protein kinase (cGK) protein levels and activity were measured. Hydrogen peroxide induced a significant reduction in cGK activity without any change in protein level. This effect was completely reversed by preincubation with db-cGMP. Calyculin A, a myosin light chain phosphatase inhibitor, prevented the cGMP-induced relaxation of BAEC. SNP, CNP and db-cGMP also partially prevented the hydrogen peroxide-induced increase in intracellular calcium levels. Catalase completely blocked this effect. In summary, the present results support a role for those metabolites which activate guanylate cyclases in the relaxation of BAEC, and suggest that the cGMP-induced BAEC relaxation could be due, at least partially, to the stimulation of cGK and/or myosin light chain phosphatase activity, and to calcium blockade.


Assuntos
Endotélio Vascular/enzimologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Fator Natriurético Atrial/farmacologia , Cálcio/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Dibutiril GMP Cíclico/farmacologia , Antagonismo de Drogas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/farmacologia , Toxinas Marinhas , Cadeias Leves de Miosina/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Nitroprussiato/farmacologia , Oxazóis/farmacologia , Fosforilação , Vasodilatação
5.
J Lab Clin Med ; 136(5): 395-401, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11079467

RESUMO

Cyclosporin A (CsA) is a powerful, widely used immunosuppressant, but it is not devoid of serious clinical side effects such as hypertension and nephrotoxicity. To clarify the mechanisms involved in the genesis of these side effects, we studied the effects of chronic CsA administration on the expression of some endothelial vasoactive factors in the aorta and kidney. For this purpose rats were treated for 30 days with 50 mg/kg/day CsA, and hypertension and renal insufficiency developed. In rats receiving CsA, the mRNA expression of pre-pro-endothelin-1 increased, whereas that of endothelial nitric oxide (NO) synthase decreased, both in the aorta and in the renal cortex (increases in pre-pro-endothelin-1 mRNA in aorta and renal cortex, respectively: 275%+/-18%, 300%+/-27%; decreases in endothelial NO synthase mRNA in aorta and renal cortex respectively: 40%+/-8%, 42%+/-6%). Moreover, long-term CsA treatment also induced an up-regulation of the endothelin-converting enzyme 1 mRNA expression (156% vs. control rats) in the renal cortex, with a significantly increased protein content and enzyme activity. In contrast, no changes were detected in endothelin-converting enzyme 1 mRNA expression in aortas from rats receiving the drug. This imbalance between endothelin-1 and NO systems could explain the hypertension and the deranged kidney function observed after long-term CsA treatment in rats.


Assuntos
Ácido Aspártico Endopeptidases/fisiologia , Ciclosporina/toxicidade , Endotélio Vascular/efeitos dos fármacos , Imunossupressores/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotelina-1 , Enzimas Conversoras de Endotelina , Endotelinas/genética , Rim/efeitos dos fármacos , Masculino , Metaloendopeptidases , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III , Precursores de Proteínas/genética , RNA Mensageiro/análise , Ratos , Ratos Wistar
6.
J Cardiovasc Pharmacol ; 35(1): 109-13, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10630740

RESUMO

The effects of reactive oxygen species (ROS) on different cellular types are variable. In some conditions they can be harmful metabolites, but they can also act as intracellular messengers that are able to activate different transcription factors. Based on previous reports in which ROS were shown to stimulate the proliferation of mesenchymal cells, this study was carried out to assess this effect on bovine aortic endothelial cells (BAECs). When cells were incubated with glucose oxidase (GO), an enzyme that generates H2O2 continuously, a significant increase in BAEC proliferation was detected. BAEC proliferation was measured by the incorporation of [3H]-thymidine in the DNA of BAECs, and also by an increase in the number of cells. The effect observed with GO was maximal at 8-24 h. Catalase abolishes proliferation. We also tested the ability of GO to phosphorylate tyrosine residues in endothelial cell proteins. A significant increase in tyrosine phosphorylation was found, which might constitute the molecular basis for proliferative effect of GO. In conclusion, these results demonstrate the ability of H2O2 to stimulate BAEC proliferation at least under certain experimental conditions. We suggest a general activation of the cascade of tyrosine phosphorylation as one of the possible cellular mechanisms responsible for GO-induced BAEC proliferation.


Assuntos
Aorta Torácica/citologia , Endotélio Vascular/citologia , Espécies Reativas de Oxigênio/fisiologia , Animais , Bovinos , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , DNA/biossíntese , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Fosforilação , Testes de Precipitina , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Tirosina/metabolismo
7.
Free Radic Biol Med ; 26(5-6): 501-10, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10218638

RESUMO

The importance of endothelial contraction in the genesis of inflammatory edema has been reported. ROS are metabolites synthesized in pathological conditions in that a significant intravascular fluid leak occurs, such as ischemia-reperfusion. Present experiments were designed to test the hypothesis that ROS, particularly H2O2, may elicit the contraction of endothelial cells, and to explore the mechanisms involved. Bovine aortic endothelial cells incubated with H2O2 showed a significant reduction in planar cell surface area (PCSA), and a significant increase in myosin light chain phosphorylation (MLCP), with a time- and dose-dependent pattern, without any significant toxicity. This effect of H2O2 was not blocked by sulotroban (TxA2 antagonist) or BN 52021 (PAF antagonist). Lanthanum chloride (calcium channel blocker) and EGTA partially inhibited the increase in MLCP induced by H2O2. H7 and staurosporine, PKC inhibitors, and PKC down-regulation (phorbol myristate acetate treatment, 24 h) also blocked H2O2-dependent endothelial contraction, measured as PCSA or MLCP. H2O2 increased the intracellular calcium concentration, an effect blunted by EGTA and lanthanum chloride. H2O2 also increased the phosphorylation of an 80 kD polypeptide, probably MARCKS, a PKC substrate. In summary, the present results demonstrate the ROS-dependent contraction of endothelial cells, an effect that could explain the intravascular fluid leak observed in some pathophysiological situations. Calcium and PKC may be involved in the development of this contraction.


Assuntos
Diterpenos , Endotélio Vascular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Animais , Aorta , Bovinos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Sequestradores de Radicais Livres/farmacologia , Ginkgolídeos , Cinética , Lactonas/farmacologia , Cadeias Leves de Miosina/metabolismo , Fosforilação , Espécies Reativas de Oxigênio , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...