Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7966): 849-854, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286597

RESUMO

The mitochondrial unfolded protein response (UPRmt) is essential to safeguard mitochondria from proteotoxic damage by activating a dedicated transcriptional response in the nucleus to restore proteostasis1,2. Yet, it remains unclear how the information on mitochondria misfolding stress (MMS) is signalled to the nucleus as part of the human UPRmt (refs. 3,4). Here, we show that UPRmt signalling is driven by the release of two individual signals in the cytosol-mitochondrial reactive oxygen species (mtROS) and accumulation of mitochondrial protein precursors in the cytosol (c-mtProt). Combining proteomics and genetic approaches, we identified that MMS causes the release of mtROS into the cytosol. In parallel, MMS leads to mitochondrial protein import defects causing c-mtProt accumulation. Both signals integrate to activate the UPRmt; released mtROS oxidize the cytosolic HSP40 protein DNAJA1, which leads to enhanced recruitment of cytosolic HSP70 to c-mtProt. Consequently, HSP70 releases HSF1, which translocates to the nucleus and activates transcription of UPRmt genes. Together, we identify a highly controlled cytosolic surveillance mechanism that integrates independent mitochondrial stress signals to initiate the UPRmt. These observations reveal a link between mitochondrial and cytosolic proteostasis and provide molecular insight into UPRmt signalling in human cells.


Assuntos
Citosol , Mitocôndrias , Estresse Proteotóxico , Resposta a Proteínas não Dobradas , Humanos , Núcleo Celular/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Proteostase , Estresse Proteotóxico/fisiologia
2.
Cancer Res ; 81(9): 2304-2317, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408118

RESUMO

Substantial evidence has shown that overexpression of the inhibitor of apoptosis protein (IAP) survivin in human tumors correlates significantly with treatment resistance and poor patient prognosis. Survivin serves as a radiation resistance factor that impacts the DNA damage response by interacting with DNA-dependent protein kinase (DNA-PKcs). However, the complexity, molecular determinants, and functional consequences of this interrelationship remain largely unknown. By applying coimmunoprecipitation and flow cytometry-based Förster resonance energy transfer assays, we demonstrated a direct involvement of the survivin baculovirus IAP repeat domain in the regulation of radiation survival and DNA repair. This survivin-mediated activity required an interaction of residues S20 and W67 with the phosphoinositide 3-kinase (PI3K) domain of DNA-PKcs. In silico molecular docking and dynamics simulation analyses, in vitro kinase assays, and large-scale mass spectrometry suggested a heterotetrameric survivin-DNA-PKcs complex that results in a conformational change within the DNA-PKcs PI3K domain. Overexpression of survivin resulted in enhanced PI3K enzymatic activity and detection of differentially abundant phosphopeptides and proteins implicated in the DNA damage response. The survivin-DNA-PKcs interaction altered the S/T-hydrophobic motif substrate specificity of DNA-PKcs with a predominant usage of S/T-P phosphorylation sites and an increase of DNA-PKcs substrates including Foxo3. These data demonstrate that survivin differentially regulates DNA-PKcs-dependent radiation survival and DNA double-strand break repair via formation of a survivin-DNA-PKcs heterotetrameric complex. SIGNIFICANCE: These findings provide insight into survivin-mediated regulation of DNA-PKcs kinase and broaden our knowledge of the impact of survivin in modulating the cellular radiation response.See related commentary by Iliakis, p. 2270 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2304/F1.large.jpg.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais/genética , Survivina/metabolismo , Domínio Catalítico/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Especificidade por Substrato/genética , Survivina/genética , Transfecção
3.
Sci Rep ; 10(1): 13297, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764653

RESUMO

In bioengineering, scaffold proteins have been increasingly used to recruit molecules to parts of a cell, or to enhance the efficacy of biosynthetic or signalling pathways. For example, scaffolds can be used to make weak or non-immunogenic small molecules immunogenic by attaching them to the scaffold, in this role called carrier. Here, we present the dodecin from Mycobacterium tuberculosis (mtDod) as a new scaffold protein. MtDod is a homododecameric complex of spherical shape, high stability and robust assembly, which allows the attachment of cargo at its surface. We show that mtDod, either directly loaded with cargo or equipped with domains for non-covalent and covalent loading of cargo, can be produced recombinantly in high quantity and quality in Escherichia coli. Fusions of mtDod with proteins of up to four times the size of mtDod, e.g. with monomeric superfolder green fluorescent protein creating a 437 kDa large dodecamer, were successfully purified, showing mtDod's ability to function as recruitment hub. Further, mtDod equipped with SYNZIP and SpyCatcher domains for post-translational recruitment of cargo was prepared of which the mtDod/SpyCatcher system proved to be particularly useful. In a case study, we finally show that mtDod-peptide fusions allow producing antibodies against human heat shock proteins and the C-terminus of heat shock cognate 70 interacting protein (CHIP).


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Imunização/métodos , Engenharia de Proteínas , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...