Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 177(3): 725-742, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18211475

RESUMO

Here, an approach based on natural genetic variation was adopted to analyse powdery mildew resistance in Arabidopsis thaliana. Accessions resistant to multiple powdery mildew species were crossed with the susceptible Col-0 ecotype and inheritance of resistance was analysed. Histochemical staining was used to visualize archetypal plant defence responses such as callose deposition, hydrogen peroxide accumulation and host cell death in a subset of these ecotypes. In six accessions, resistance was likely of polygenic origin while 10 accessions exhibited evidence for a single recessively or semi-dominantly inherited resistance locus. Resistance in the latter accessions was mainly manifested at the terminal stage of the fungal life cycle by a failure of abundant conidiophore production. The resistance locus of several of these ecotypes was mapped to a genomic region containing the previously analysed atypical RPW8 powdery mildew resistance genes. Gene silencing revealed that members of the RPW8 locus were responsible for resistance to Golovinomyces orontii in seven accessions. These results suggest that broad-spectrum powdery mildew resistance in A. thaliana is predominantly of polygenic origin or based on RPW8 function. The findings shed new light on the natural variation of inheritance, phenotypic expression and pathogen range of RPW8-conditioned powdery mildew resistance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ascomicetos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Arabidopsis/microbiologia , Morte Celular/imunologia , Mapeamento Cromossômico , Teste de Complementação Genética , Variação Genética , Glucanos/metabolismo , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Microscopia , Herança Multifatorial , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
2.
Arabidopsis Book ; 6: e0115, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-22303240

RESUMO

The powdery mildew diseases, caused by fungal species of the Erysiphales, have an important economic impact on a variety of plant species and have driven basic and applied research efforts in the field of phytopathology for many years. Although the first taxonomic reports on the Erysiphales date back to the 1850's, advances into the molecular biology of these fungal species have been hampered by their obligate biotrophic nature and difficulties associated with their cultivation and genetic manipulation in the laboratory. The discovery in the 1990's of a few species of powdery mildew fungi that cause disease on Arabidopsis has opened a new chapter in this research field. The great advantages of working with a model plant species have translated into remarkable progress in our understanding of these complex pathogens and their interaction with the plant host. Herein we summarize advances in the study of Arabidopsis-powdery mildew interactions and discuss their implications for the general field of plant pathology. We provide an overview of the life cycle of the pathogens on Arabidopsis and describe the structural and functional changes that occur during infection in the host and fungus in compatible and incompatible interactions, with special emphasis on defense signaling, resistance pathways, and compatibility factors. Finally, we discuss the future of powdery mildew research in anticipation of the sequencing of multiple powdery mildew genomes. The cumulative body of knowledge on powdery mildews of Arabidopsis provides a valuable tool for the study and understanding of disease associated with many other obligate biotrophic pathogen species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...