Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626708

RESUMO

The transcription factor hypoxia-inducible factor (HIF) is the main oxygen sensor which regulates adaptation to cellular hypoxia. The aim of this study was to establish cultured murine hepatocyte derived cells (mHDC) as an in vitro model and to analyze the role of HIF-1α in apoptosis induction, DNA damage repair and sensitivity to ionizing radiation (IR). We have crossed C57/BL6 mice that bear loxP sites flanking exon 2 of Hif1a with mice which carry tamoxifen-inducible global Cre expression. From the offspring, we have established transduced hepatocyte cultures which are permanently HIF-1α deficient after tamoxifen treatment. We demonstrated that the cells produce albumin, acetylcholine esterase, and the cytokeratins 8 and 18 which functionally characterizes them as hepatocytes. In moderate hypoxia, HIF-1α deficiency increased IR-induced apoptosis and significantly reduced the surviving fraction of mHDC as compared to HIF-1α expressing cells in colony formation assays. Furthermore, HIF-1α knockout cells displayed increased IR-induced DNA damage as demonstrated by increased generation and persistence of γH2AX foci. HIF-1α deficient cells showed delayed DNA repair after IR in hypoxia in neutral comet assays which may indicate that non-homologous end joining (NHEJ) repair capacity was affected. Overall, our data suggest that HIF-1α inactivation increases radiation sensitivity of mHDC cells.


Assuntos
Hepatócitos , Hipóxia , Animais , Hepatócitos/metabolismo , Hipóxia/metabolismo , Integrases , Camundongos , Radiação Ionizante , Tamoxifeno
2.
Sci Rep ; 11(1): 7199, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785835

RESUMO

The disulfide isomerase ERp57, originally found in the endoplasmic reticulum, is located in multiple cellular compartments, participates in diverse cell functions and interacts with a huge network of binding partners. It was recently suggested as an attractive new target for cancer therapy due to its critical role in tumor cell proliferation. Since a major bottleneck in cancer treatment is the occurrence of hypoxic areas in solid tumors, the role of ERp57 in cell growth was tested under oxygen depletion in the colorectal cancer cell line HCT116. We observed a severe growth inhibition when ERp57 was knocked down in hypoxia (1% O2) as a consequence of downregulated c-Myc, PLK1, PDPK1 (PDK1) and AKT (PKB). Further, irradiation experiments revealed also a radiosensitizing effect of ERp57 depletion under oxygen deprivation. Compared to ERp57, we do not favour PDPK1 as a suitable pharmaceutical target as its efficient knockdown/chemical inhibition did not show an inhibitory effect on proliferation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Hipóxia Tumoral , Apoptose , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Oxigênio/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Transdução de Sinais , Quinase 1 Polo-Like
3.
Cell Death Dis ; 12(1): 82, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441543

RESUMO

Hypoxia-induced resistance of tumor cells to therapeutic treatment is an unresolved limitation due to poor vascular accessibility and protective cell adaptations provided by a network, including PERK, NRF2, and HIF signaling. All three pathways have been shown to influence each other, but a detailed picture remains elusive. To explore this crosstalk in the context of tumor therapy, we generated human cancer cell lines of pancreatic and lung origin carrying an inducible shRNA against NRF2 and PERK. We report that PERK-related phosphorylation of NRF2 is only critical in Keap1 wildtype cells to escape its degradation, but shows no direct effect on nuclear import or transcriptional activity of NRF2. We could further show that NRF2 is paramount for proliferation, ROS elimination, and radioprotection under constant hypoxia (1% O2), but is dispensable under normoxic conditions or after reoxygenation. Depletion of NRF2 does not affect apoptosis, cell cycle progression and proliferation factors AKT and c-Myc, but eliminates cellular HIF-1α signaling. Co-IP experiments revealed a protein interaction between NRF2 and HIF-1α and strongly suggest NRF2 as one of the cellular key factor for the HIF pathway. Together these data provide new insights on the complex role of the PERK-NRF2-HIF-axis for cancer growth.


Assuntos
Hipóxia Celular/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Transfecção
4.
Sci Rep ; 10(1): 15299, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943707

RESUMO

Upon ER stress cells activate the unfolded protein response through PERK, IRE1 and ATF6. Remarkable effort has been made to delineate the downstream signaling of these three ER stress sensors after activation, but upstream regulation at the ER luminal site still remains mostly undefined. Here we report that the thiol oxidoreductase PDI is mandatory for activation of the PERK pathway in HEK293T as well as in human pancreatic, lung and colon cancer cells. Under ER stress, depletion of PDI selectively abrogated eIF2α phosphorylation, induction of ATF4, CHOP and even BiP. Furthermore, we could demonstrate that PDI prevented degradation of activated PERK by the 26S proteasome and therefore contributes to maintained PERK signaling. As a result of decreased PERK activity, PDI depleted cells showed an increased vulnerability to ER stress induced by chemicals or ionizing radiation in 2D as well as in 3D culture models. We conclude that PDI is an obligatory regulator of the PERK pathway with future therapy implications.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Oxirredutases/metabolismo , Transdução de Sinais/fisiologia , eIF-2 Quinase/metabolismo , Células A549 , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
5.
Exp Cell Res ; 374(1): 29-37, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412717

RESUMO

Autophagy is commonly described as a cell survival mechanism and has been implicated in chemo- and radioresistance of cancer cells. Whether ionizing radiation induced autophagy triggers tumor cell survival or cell death still remains unclear. In this study the autophagy related proteins Beclin1 and ATG7 were tested as potential targets to sensitize colorectal carcinoma cells to ionizing radiation under normoxic, hypoxic and starvation conditions. Colony formation, apoptosis and cell cycle analysis revealed that knockdown of Beclin1 or ATG7 does not enhance radiosensitivity in HCT-116 cells. Furthermore, ATG7 knockdown led to an increased survival fraction under oxygen and glutamine starvation, indicating that ionizing radiation indeed induces autophagy which, however, leads to cell death finally. These results highlight that inhibition of autophagic pathways does not generally increase therapy success but may also lead to an unfavorable outcome especially under amino acid and oxygen restriction.


Assuntos
Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Neoplasias Colorretais/patologia , Radiação Ionizante , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Glutamina/deficiência , Humanos , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...