Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 183: 107621, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029539

RESUMO

A new but still unpublished entomopathogenic fungus (ARSEF13372) in the genus Pandora (Entomophthorales: Entomophthoraceae) was originally isolated from Cacopsylla sp. (Hemiptera: Psyllidae). Several species of the genus Cacopsylla vector phloem-borne bacteria of the genus 'Candidatus Phytoplasma', which cause diseases in fruit crops such as apple proliferation, pear decline and European stone fruit yellows. To determine Pandora's host range and biocontrol potential we conducted laboratory infection bioassays; Hemipteran phloem-feeding insects were exposed to conidia actively discharged from in vitro produced mycelial mats of standardized area. We documented the pathogenicity of Pandora sp. nov. to species of the insect families Psyllidae and Triozidae, namely Cacopsyllapyri L., C.pyricola (Foerster), C.picta (Foerster, 1848), C.pruni (Scopoli), C.peregrina (Foerster), and Trioza apicalis Foerster. The occurrence of postmortem signs of infection on cadavers within 10 days post inoculation proved that Pandora sp. nov. was infective to the tested insect species under laboratory conditions and significantly reduced mean survival time for C.pyri (summer form and nymph), C.pyricola, C.picta, C.pruni, C.peregrina and T.apicalis. Assessing a potential interaction between phytoplasma, fungus and insect host revealed that phytoplasma infection ('Candidatus Phytoplasma mali') of the vector C.picta and/or its host plant apple Malus domestica Borkh. did not significantly impact the survival of C.picta after Pandora sp. nov. infection. The results from infection bioassays were discussed in relation to Pandora sp. nov. host range and its suitability as biocontrol agent in integrated pest management strategies of psyllid pests, including vector species, in orchards.


Assuntos
Entomophthorales/fisiologia , Entomophthorales/patogenicidade , Hemípteros/microbiologia , Controle de Insetos , Controle Biológico de Vetores , Animais , Agentes de Controle Biológico/farmacologia , Insetos Vetores/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
2.
J Insect Physiol ; 131: 104229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33766541

RESUMO

The summer apple psyllid Cacopsylla picta (Foerster) is the vector of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease (AP). During its phloem-feeding activities it transmits this biotrophic bacterium from infected to healthy apple trees (Malus domestica Borkh.) causing high economic losses. During its life cycle, C.picta performs two host switches: In summer, the new adult generation (emigrants) hatch on apples before they emigrate to their overwintering host conifers. The following spring, the overwintered adult generation (remigrants) remigrate into apple orchards for mating and oviposition. The preimaginal stages (nymphs) develop on apple. It is known that phytopathogen-induced changes in plant physiology can affect insect-plant-interactions. In 12 h recordings of electrical penetration graphs (EPG) it was assessed whether 'Ca. P. mali' infection of the plant affected probing and feeding behavior of the vector C.picta. Its life stage and the infection status of the host plant (and the interaction between these factors) significantly affected the first occurrence, duration and frequency of probing and feeding phases. On 'Ca. P. mali' infected plants, the phloem salivation phase occurred later than on non-infected plants. Even though all life stages fed both on phloem and xylem, significant differences were found in the frequency and duration of phloem and xylem ingestion phases. Nymphs spent the shortest time non-probing, earlier started the first leaf penetration and longer ingested xylem compared with adults. Further, phloem phases differed between migratory stages; remigrants had higher numbers of phloem ingestion events and spent longer ingesting phloem than emigrants. For emigrants, however, phloem contact was very rarely observed during our recordings. The impact of our findings for understanding the multitrophic interactions between host plant, pathogen and behavior of vector insects are discussed with regard to the epidemiology of AP and pest control strategies of the vector.


Assuntos
Hemípteros/fisiologia , Herbivoria/fisiologia , Malus/microbiologia , Migração Animal , Animais , Feminino , Ninfa/fisiologia , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...