Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849523

RESUMO

Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.

2.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746344

RESUMO

Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary: Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.

3.
Science ; 383(6683): eade8064, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330107

RESUMO

Penile erection is mediated by the corpora cavernosa, a trabecular-like vascular bed that enlarges upon vasodilation, but its regulation is not completely understood. Here, we show that perivascular fibroblasts in the corpora cavernosa support vasodilation by reducing norepinephrine availability. The effect on penile blood flow depends on the number of fibroblasts, which is regulated by erectile activity. Erection dynamically alters the positional arrangement of fibroblasts, temporarily down-regulating Notch signaling. Inhibition of Notch increases fibroblast numbers and consequently raises penile blood flow. Continuous Notch activation lowers fibroblast numbers and reduces penile blood perfusion. Recurrent erections stimulate fibroblast proliferation and limit vasoconstriction, whereas aging reduces the number of fibroblasts and lowers penile blood flow. Our findings reveal adaptive, erectile activity-dependent modulation of penile blood flow by fibroblasts.


Assuntos
Transportador 1 de Aminoácido Excitatório , Fibroblastos , Ereção Peniana , Pênis , Receptores Notch , Animais , Masculino , Camundongos , Circulação Sanguínea , Transportador 1 de Aminoácido Excitatório/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ereção Peniana/fisiologia , Pênis/irrigação sanguínea , Pênis/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Vasoconstrição , Vasodilatação
4.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117255

RESUMO

In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.


Assuntos
Células Endoteliais , Gânglios Espinais , Humanos , Macrófagos , Pericitos , Permeabilidade
5.
Am J Physiol Cell Physiol ; 325(6): C1415-C1420, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811731

RESUMO

Recent advancements in human tissue analyses and animal models have revealed that fibrotic scarring is a common response to various lesions in the central nervous system (CNS). Perivascular cells within the brain or spinal cord give rise to stromal fibroblasts that form fibrotic scar tissue. In this review, we summarize the current understanding of fibrotic scar formation in different CNS lesions and evaluate published human single-cell gene expression datasets to gather information on perivascular cells. Specifically, we highlight the classification of pericytes and fibroblast subtypes and compare the marker expression of perivascular cells across different datasets.


Assuntos
Sistema Nervoso Central , Cicatriz , Animais , Humanos , Cicatriz/genética , Cicatriz/metabolismo , Cicatriz/patologia , Sistema Nervoso Central/metabolismo , Fibrose , Encéfalo/metabolismo , Pericitos/metabolismo , Fibroblastos/metabolismo
6.
Cell Rep ; 38(9): 110440, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235796

RESUMO

Spinal cord ependymal cells display neural stem cell properties in vitro and generate scar-forming astrocytes and remyelinating oligodendrocytes after injury. We report that ependymal cells are functionally heterogeneous and identify a small subpopulation (8% of ependymal cells and 0.1% of all cells in a spinal cord segment), which we denote ependymal A (EpA) cells, that accounts for the in vitro stem cell potential in the adult spinal cord. After spinal cord injury, EpA cells undergo self-renewing cell division as they give rise to differentiated progeny. Single-cell transcriptome analysis revealed a loss of ependymal cell gene expression programs as EpA cells gained signaling entropy and dedifferentiated to a stem-cell-like transcriptional state after an injury. We conclude that EpA cells are highly differentiated cells that can revert to a stem cell state and constitute a therapeutic target for spinal cord repair.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Neurais/metabolismo , Neuroglia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
7.
Nat Commun ; 12(1): 5501, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535655

RESUMO

Fibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models that develop fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes. Perivascular cells with a type A pericyte marker profile also exist in the human brain and spinal cord. We uncover type A pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.


Assuntos
Sistema Nervoso Central/patologia , Cicatriz/patologia , Pericitos/patologia , Envelhecimento/fisiologia , Animais , Astrócitos/patologia , Lesões Encefálicas Traumáticas/patologia , Isquemia Encefálica/patologia , Neoplasias Encefálicas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Fibrose , Glioblastoma/patologia , Humanos , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/patologia , Células Estromais/patologia
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389674

RESUMO

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Assuntos
Astrócitos/fisiologia , Conexina 30/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Animais , Diferenciação Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Interneurônios/enzimologia , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Recombinação Genética , Tamoxifeno/farmacologia
9.
FASEB J ; 34(10): 13978-13992, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32840016

RESUMO

The chemotherapeutic agent cisplatin is renowned for its ototoxic effects. While hair cells in the cochlea are established targets of cisplatin, less is known regarding the afferent synapse, which is an essential component in the faithful temporal transmission of sound. The glutamate aspartate transporter (GLAST) shields the auditory synapse from excessive glutamate release, and its loss of function increases the vulnerability to noise, salicylate, and aminoglycosides. Until now, the involvement of GLAST in cisplatin-mediated ototoxicity remains unknown. Here, we test in mice lacking GLAST the effects of a low-dose cisplatin known not to cause any detectable change in hearing thresholds. When administered at nighttime, a mild hearing loss in GLAST KO mice was found but not at daytime, revealing a potential circadian regulation of the vulnerability to cisplatin-mediated ototoxicity. We show that the auditory synapse of GLAST KO mice is more vulnerable to cisplatin administration during the active phase (nighttime) when compared to WT mice and treatment during the inactive phase (daytime). This effect was not related to the abundance of platinum compounds in the cochlea, rather cisplatin had a dose-dependent impact on cochlear clock rhythms only after treatment at nighttime suggesting that cisplatin can modulate the molecular clock. Our findings suggest that the current protocols of cisplatin administration in humans during daytime may cause a yet undetectable damage to the auditory synapse, more so in already damaged ears, and severely impact auditory sensitivity in cancer survivors.


Assuntos
Antineoplásicos/toxicidade , Ritmo Circadiano , Cisplatino/toxicidade , Ototoxicidade/genética , Animais , Limiar Auditivo , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Transportador 1 de Aminoácido Excitatório/deficiência , Transportador 1 de Aminoácido Excitatório/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ototoxicidade/etiologia , Ototoxicidade/fisiopatologia
10.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29615452

RESUMO

Tissues contain distinct stem cell niches, but whether cell turnover is coordinated between niches during growth is unknown. Here, we report that in mouse skin, hair growth is accompanied by sebaceous gland and interfollicular epidermis expansion. During hair growth, cells in the bulge and outer root sheath temporarily upregulate the glutamate transporter SLC1A3, and the number of SLC1A3+ basal cells in interfollicular epidermis and sebaceous gland increases. Fate mapping of SLC1A3+ cells in mice revealed transient expression in proliferating stem/progenitor cells in all three niches. Deletion of slc1a3 delays hair follicle anagen entry, uncouples interfollicular epidermis and sebaceous gland expansion from the hair cycle, and leads to reduced fur density in aged mice, indicating a role of SLC1A3 in stem/progenitor cell activation. Modulation of metabotropic glutamate receptor 5 activity mimics the effects of SLC1A3 deletion or inhibition. These data reveal that stem/progenitor cell activation is synchronized over distinct niches during growth and identify SLC1A3 as a general marker and effector of activated epithelial stem/progenitor cells throughout the skin.


Assuntos
Proliferação de Células/fisiologia , Epiderme/crescimento & desenvolvimento , Transportador 1 de Aminoácido Excitatório/biossíntese , Regulação da Expressão Gênica/fisiologia , Glândulas Sebáceas/crescimento & desenvolvimento , Células-Tronco/metabolismo , Animais , Transportador 1 de Aminoácido Excitatório/genética , Camundongos , Camundongos Transgênicos , Glândulas Sebáceas/citologia
11.
Cell ; 173(1): 153-165.e22, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502968

RESUMO

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.


Assuntos
Cicatriz/patologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Modelos Animais de Doenças , Potenciais Evocados/efeitos da radiação , Matriz Extracelular/metabolismo , Fibrose , Luz , Camundongos , Camundongos Transgênicos , Pericitos/citologia , Pericitos/metabolismo , Estimulação Luminosa , Tratos Piramidais/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Regeneração , Córtex Sensório-Motor/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
12.
Matrix Biol ; 68-69: 561-570, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29428230

RESUMO

Following lesions to the central nervous system, scar tissue forms at the lesion site. Injury often severs axons and scar tissue is thought to block axonal regeneration, resulting in permanent functional deficits. While scar-forming astrocytes have been extensively studied, much less attention has been given to the fibrotic, non-glial component of the scar. We here review recent progress in understanding fibrotic scar formation following different lesions to the brain and spinal cord. We specifically highlight recent evidence for pericyte-derived fibrotic scar tissue formation, discussing the origin, recruitment, function and therapeutic relevance of fibrotic scarring.


Assuntos
Sistema Nervoso Central/patologia , Cicatriz/patologia , Animais , Encéfalo/patologia , Fibrose , Humanos , Pericitos/patologia , Medula Espinal/patologia
13.
Science ; 346(6206): 237-41, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25301628

RESUMO

Neurogenesis is restricted in the adult mammalian brain; most neurons are neither exchanged during normal life nor replaced in pathological situations. We report that stroke elicits a latent neurogenic program in striatal astrocytes in mice. Notch1 signaling is reduced in astrocytes after stroke, and attenuated Notch1 signaling is necessary for neurogenesis by striatal astrocytes. Blocking Notch signaling triggers astrocytes in the striatum and the medial cortex to enter a neurogenic program, even in the absence of stroke, resulting in 850 ± 210 (mean ± SEM) new neurons in a mouse striatum. Thus, under Notch signaling regulation, astrocytes in the adult mouse brain parenchyma carry a latent neurogenic program that may potentially be useful for neuronal replacement strategies.


Assuntos
Astrócitos/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Receptor Notch1/fisiologia , Transdução de Sinais , Acidente Vascular Cerebral/fisiopatologia , Animais , Astrócitos/citologia , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Deleção de Genes , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Receptor Notch1/genética , Acidente Vascular Cerebral/patologia
14.
Neuron ; 83(5): 1085-97, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25189209

RESUMO

The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells.


Assuntos
Células-Tronco Adultas/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Neurogênese/genética , Células-Tronco Adultas/metabolismo , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Ventrículos Cerebrais/citologia , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
15.
Science ; 342(6158): 637-40, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24179227

RESUMO

Central nervous system injuries are accompanied by scar formation. It has been difficult to delineate the precise role of the scar, as it is made by several different cell types, which may limit the damage but also inhibit axonal regrowth. We show that scarring by neural stem cell-derived astrocytes is required to restrict secondary enlargement of the lesion and further axonal loss after spinal cord injury. Moreover, neural stem cell progeny exerts a neurotrophic effect required for survival of neurons adjacent to the lesion. One distinct component of the glial scar, deriving from resident neural stem cells, is required for maintaining the integrity of the injured spinal cord.


Assuntos
Apoptose , Axônios/fisiologia , Cicatriz/patologia , Células-Tronco Neurais/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/fisiologia , Sobrevivência Celular , Fatores de Transcrição Forkhead/genética , Genes ras , Camundongos , Camundongos Mutantes
16.
Cell Stem Cell ; 10(6): 657-659, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22704503

RESUMO

Research in the field of adult neurogenesis has seen substantial progress over recent years. Here we discuss some of the major focus areas for future investigation: neural stem cell heterogeneity, the role of latent stem cells, and the extent of neurogenesis in the adult human brain.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Adulto , Humanos
17.
Science ; 333(6039): 238-42, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21737741

RESUMO

There is limited regeneration of lost tissue after central nervous system injury, and the lesion is sealed with a scar. The role of the scar, which often is referred to as the glial scar because of its abundance of astrocytes, is complex and has been discussed for more than a century. Here we show that a specific pericyte subtype gives rise to scar-forming stromal cells, which outnumber astrocytes, in the injured spinal cord. Blocking the generation of progeny by this pericyte subtype results in failure to seal the injured tissue. The formation of connective tissue is common to many injuries and pathologies, and here we demonstrate a cellular origin of fibrosis.


Assuntos
Cicatriz/patologia , Pericitos/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Vasos Sanguíneos/patologia , Contagem de Células , Proliferação de Células , Fibrose , Camundongos , Camundongos Transgênicos , Pericitos/fisiologia , Medula Espinal/irrigação sanguínea , Células Estromais/patologia
18.
Mol Biol Cell ; 22(11): 1864-77, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21471000

RESUMO

In neurons certain mRNA transcripts are transported to synapses through mechanisms that are not fully understood. Here we report that the heterogeneous nuclear ribonucleoprotein CBF-A (CArG Box binding Factor A) facilitates dendritic transport and localization of activity-regulated cytoskeleton-associated protein (Arc), brain-derived neurotrophic factor (BDNF), and calmodulin-dependent protein kinase II (CaMKIIα) mRNAs. We discovered that, in the adult mouse brain, CBF-A has a broad distribution. In the nucleus, CBF-A was found at active transcription sites and interchromosomal spaces and close to nuclear pores. In the cytoplasm, CBF-A localized to dendrites as well as pre- and postsynaptic sites. CBF-A was found in synaptosomal fractions, associated with Arc, BDNF, and CaMKIIα mRNAs. Electrophoretic mobility shift assays demonstrated a direct interaction mediated via their hnRNP A2 response element (A2RE)/RNA trafficking sequence (RTS) elements located in the 3' untranslated regions. In situ hybridization and microscopy on live hippocampal neurons showed that CBF-A is in dynamic granules containing Arc, BDNF, and CaMKIIα mRNAs. N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) postsynaptic receptor stimulation led to CBF-A accumulation in dendrites; increased Arc, BDNF, and CaMKIIα mRNA levels; and increased amounts of transcripts coprecipitating with CBF-A. Finally, CBF-A gene knockdown led to decreased mRNA levels. We propose that CBF-A cotranscriptionally binds RTSs in Arc, BDNF, and CaMKIIα mRNAs and follows the transcripts from genes to dendrites, promoting activity-dependent nuclear sorting of transport-competent mRNAs.


Assuntos
Regiões 3' não Traduzidas , Fator de Ligação a CCAAT/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Sequência de Bases , Fator Neurotrófico Derivado do Encéfalo/genética , Fator de Ligação a CCAAT/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Técnicas de Cultura de Células , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Proteínas do Citoesqueleto/genética , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Ligação Proteica , Interferência de RNA , Ratos , Sinapses/metabolismo , Sinapses/ultraestrutura
19.
Cell Stem Cell ; 7(6): 730-43, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21112567

RESUMO

Stem cells remain in specialized niches over the lifespan of the organism in many organs to ensure tissue homeostasis and enable regeneration. How the niche is maintained is not understood, but is probably as important as intrinsic stem cell self-renewal capacity for tissue integrity. We here demonstrate a high degree of phenotypic plasticity of the two main niche cell types, ependymal cells and astrocytes, in the neurogenic lateral ventricle walls in the adult mouse brain. In response to a lesion, astrocytes give rise to ependymal cells and ependymal cells give rise to niche astrocytes. We identify EphB2 forward signaling as a key pathway regulating niche cell plasticity. EphB2 acts downstream of Notch and is required for the maintenance of ependymal cell characteristics, thereby inhibiting the transition from ependymal cell to astrocyte. Our results show that niche cell identity is actively maintained and that niche cells retain a high level of plasticity.


Assuntos
Células-Tronco Neurais/metabolismo , Receptor EphB2/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/citologia , Animais , Astrócitos/metabolismo , Proliferação de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Notch/metabolismo , Nicho de Células-Tronco/metabolismo
20.
J Neurosci ; 30(41): 13794-807, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20943920

RESUMO

The generation of new neurons from neural stem cells in the adult hippocampal dentate gyrus contributes to learning and mood regulation. To sustain hippocampal neurogenesis throughout life, maintenance of the neural stem cell pool has to be tightly controlled. We found that the Notch/RBPJκ-signaling pathway is highly active in neural stem cells of the adult mouse hippocampus. Conditional inactivation of RBPJκ in neural stem cells in vivo resulted in increased neuronal differentiation of neural stem cells in the adult hippocampus at an early time point and depletion of the Sox2-positive neural stem cell pool and suppression of hippocampal neurogenesis at a later time point. Moreover, RBPJκ-deficient neural stem cells displayed impaired self-renewal in vitro and loss of expression of the transcription factor Sox2. Interestingly, we found that Notch signaling increases Sox2 promoter activity and Sox2 expression in adult neural stem cells. In addition, activated Notch and RBPJκ were highly enriched on the Sox2 promoter in adult hippocampal neural stem cells, thus identifying Sox2 as a direct target of Notch/RBPJκ signaling. Finally, we found that overexpression of Sox2 can rescue the self-renewal defect in RBPJκ-deficient neural stem cells. These results identify RBPJκ-dependent pathways as essential regulators of adult neural stem cell maintenance and suggest that the actions of RBPJκ are, at least in part, mediated by control of Sox2 expression.


Assuntos
Células-Tronco Adultas/metabolismo , Hipocampo/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Contagem de Células , Imunoprecipitação da Cromatina , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurogênese/fisiologia , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...