Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432709

RESUMO

Targeted molecular radiation therapy is a promising emerging treatment modality in oncology, and peptide synthesis may shorten the time to reach the clinical stage. In this study, we have explored Chemo-Enzymatic Peptide Synthesis, or CEPS, as a new means of producing a therapeutic HER2 targeted Affibody® molecule, comprising a C-terminal albumin binding domain (ABD) for half-life extension and a total length of 108 amino acids. In addition, a DOTA moiety could be incorporated at N-terminus directly during the synthesis step and subsequently utilized for site-specific radiolabeling with the therapeutic radionuclide 177Lu. Retained thermodynamic stability as well as retained binding to both HER2 and albumin was verified. Furthermore, HER2 binding specificity of the radiolabeled Affibody molecule was confirmed by an in vitro saturation assay showing a significantly higher cell-bound activity of SKOV-3 (high HER2 expression) compared with BxPC3 (low HER2 expression), both in the presence and absence of HSA. In vivo evaluation in mice bearing HER2 expressing xenografts also showed specific tumor targeting as well as extended time in circulation and reduced kidney uptake compared with a HER2 targeted Affibody molecule without the ABD moiety. To conclude, we have demonstrated that CEPS can be used for production of Affibody-fusion molecules with retained in vitro and in vivo functionality.

2.
Microb Cell Fact ; 21(1): 36, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264156

RESUMO

BACKGROUND: Affibody molecules are synthetic peptides with a variety of therapeutic and diagnostic applications. To date, Affibody molecules have mainly been produced by the bacterial production host Escherichia coli. There is an interest in exploring alternative production hosts to identify potential improvements in terms of yield, ease of production and purification advantages. In this study, we evaluated the feasibility of Saccharomyces cerevisiae as a production chassis for this group of proteins. RESULTS: We examined the production of three different Affibody molecules in S. cerevisiae and found that these Affibody molecules were partially degraded. An albumin-binding domain, which may be attached to the Affibody molecules to increase their half-life, was identified to be a substrate for several S. cerevisiae proteases. We tested the removal of three vacuolar proteases, proteinase A, proteinase B and carboxypeptidase Y. Removal of one of these, proteinase A, resulted in intact secretion of one of the targeted Affibody molecules. Removal of either or both of the two additional proteases, carboxypeptidase Y and proteinase B, resulted in intact secretion of the two remaining Affibody molecules. The produced Affibody molecules were verified to bind their target, human HER3, as potently as the corresponding molecules produced in E. coli in an in vitro surface-plasmon resonance binding assay. Finally, we performed a fed-batch fermentation with one of the engineered protease-deficient S. cerevisiae strains and achieved a protein titer of 530 mg Affibody molecule/L. CONCLUSION: This study shows that engineered S. cerevisiae has a great potential as a production host for recombinant Affibody molecules, reaching a high titer, and for proteins where endotoxin removal could be challenging, the use of S. cerevisiae obviates the need for endotoxin removal from protein produced in E. coli.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Fermentação , Humanos , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos
3.
Sci Rep ; 10(1): 18148, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097752

RESUMO

The family of vascular endothelial growth factor (VEGF) ligands and their interactions with VEGF receptors (VEGFRs) play important roles in both pathological and physiological angiogenesis. Hence, agonistic and antagonistic ligands targeting this signaling pathway have potential for both studies on fundamental biology and for development of therapies and diagnostics. Here, we engineer VEGFR2-binding affibody molecules for increased thermostability, refolding and improved biodistribution. We designed libraries based on the original monomeric binders with the intention of reducing hydrophobicity, while retaining high affinity for VEGFR2. Libraries were displayed on bacteria and binders were isolated by fluorescence-activated cell sorting (FACS). In parallel, we used an automated sequence- and structure-based in silico algorithm to identify potentially stabilizing mutations. Monomeric variants isolated from the screening and the in silico approach, respectively, were characterized by circular dichroism spectroscopy and biosensor assays. The most promising mutations were combined into new monomeric constructs which were finally fused into a dimeric construct, resulting in a 15 °C increase in melting temperature, complete refolding capability after heat-induced denaturation, retained low picomolar affinity and improved biodistribution profile in an in vivo mouse model. These VEGFR2-binding affibody molecules show promise as candidates for further in vivo studies to assess their suitability as molecular imaging and therapeutic agents.


Assuntos
Engenharia de Proteínas , Proteínas Recombinantes de Fusão , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Simulação por Computador , Evolução Molecular Direcionada , Feminino , Citometria de Fluxo , Temperatura Alta/efeitos adversos , Camundongos , Modelos Animais , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Distribuição Tecidual
4.
Sci Rep ; 9(1): 9405, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253840

RESUMO

Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARPin G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)3) of histidine-containing tags would influence the biodistribution of [99mTc]Tc(CO)3-labeled DARPin G3. To test the hypothesis, G3 variants containing tags at N-terminus (H6-G3 and (HE)3-G3) or at C-terminus (G3-H6 and G3-(HE)3) were labeled with [99mTc]Tc(CO)3. Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [99mTc]Tc(CO)3-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [99mTc]Tc(CO)3-(HE)3-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [99mTc]Tc(CO)3-(HE)3-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.


Assuntos
Histidina , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Tecnécio/química , Animais , Linhagem Celular Tumoral , Histidina/química , Histidina/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Receptor ErbB-2 , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Oncol ; 54(4): 1209-1220, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30968147

RESUMO

Evaluation of human epidermal growth factor receptor 2 (HER2) expression levels in breast and gastroesophageal cancer is used for the stratification of patients for HER2­targeting therapies. The use of radionuclide molecular imaging may facilitate such evaluation in a non­invasive way. Designed ankyrin repeat proteins (DARPins) are engineered scaffold proteins with high potential as probes for radionuclide molecular imaging. DARPin G3 binds with high affinity to HER2 and may be used to visualize this important therapeutic target. Studies on other engineered scaffold proteins have demonstrated that selection of the optimal labeling approach improves the sensitivity and specificity of radionuclide imaging. The present study compared two methods of labeling G3, direct and indirect radioiodination, to select an approach providing the best imaging contrast. G3­H6 was labeled with iodine­124, iodine­125 and iodine­131 using a direct method. A novel construct bearing a C­terminal cysteine, G3­GGGC, was site­specifically labeled using [125I]I­iodo­[(4­hydroxyphenyl)ethyl]maleimide (HPEM). The two radiolabeled G3 variants preserved binding specificity and high affinity to HER2­expressing cells. The specificity of tumor targeting in vivo was demonstrated. Biodistribution comparison of [131I]I­G3­H6 and [125I]I­HPEM­G3­GGGC in mice, bearing HER2­expressing SKOV3 xenografts, demonstrated an appreciable contribution of hepatobiliary excretion to the clearance of [125I]I­HPEM­G3­GGGC and a decreased tumor uptake compared to [131I]I­G3­H6. The direct label provided higher tumor­to­blood and tumor­to­organ ratios compared with the indirect label at 4 h post­injection. The feasibility of high contrast PET/CT imaging of HER2 expression in SKOV3 xenografts in mice using [124I]I­G3­H6 was demonstrated. In conclusion, direct radioiodination is the preferable approach for labeling DARPin G3 with iodine­123 and iodine­124 for clinical single photon emission computed tomography and positron emission tomography imaging.


Assuntos
Repetição de Anquirina/genética , Radioisótopos do Iodo/administração & dosagem , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Engenharia de Proteínas , Cintilografia/métodos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Pharm ; 16(3): 995-1008, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30608701

RESUMO

Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H6 and G3-H6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H6 in comparison to 9_29-H6. Technetium-99m labeled G3-H6 demonstrated a better biodistribution profile than 9_29-H6, with several-fold lower uptake in liver. Radioiodinated G3-H6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H6 with high clinical potential for imaging of HER2.


Assuntos
Repetição de Anquirina , Anquirinas/classificação , Anquirinas/farmacocinética , Radioisótopos do Iodo/farmacocinética , Neoplasias/diagnóstico por imagem , Receptor ErbB-2/metabolismo , Tecnécio/farmacocinética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Molecular , Neoplasias/patologia , Ligação Proteica , Cintilografia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
ACS Biomater Sci Eng ; 5(12): 6474-6484, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417800

RESUMO

Strategies to promote vascularization are being developed in order to improve long-term survival of artificial tissue constructs. Vascular endothelial growth factor A (VEGFA) has an important role in both pathological and physiological angiogenesis, mediated by binding to VEGF receptors (VEGFRs). In nature, signaling can be modulated by presentation of growth factors in either soluble form or bound to the extracellular matrix. Herein, a previously reported VEGFR2-binding antagonistic affibody heterodimer (di-ZVEGFR2) was formatted into a tetrameric construct (tetra-ZVEGFR2) with the intention of generating artificial agonistic ligands for VEGFR2 signaling. In vitro cell assays demonstrated that tetra-ZVEGFR2 induced VEGFR2 phosphorylation and increased cell proliferation, in contrast to di-ZVEGFR2. In order to simulate matrix-bound factors, both constructs were fused at the genetic level to a partial spider silk protein, 4RepCT. Assembly of the silk fusion proteins onto a solid surface was verified by quartz crystal microbalance with dissipation analysis. Moreover, surface plasmon resonance studies demonstrated retained VEGFR2 binding ability of di-ZVEGFR2-silk and tetra-ZVEGFR2-silk after silk-mediated immobilization. Cell culture studies demonstrated that VEGFR2-overexpressing cells adhered to di-ZVEGFR2-silk and tetra-ZVEGFR2-silk and had activated VEGFR2 signaling. Altogether, we demonstrate the potential of especially tetra-ZVEGFR2-silk to promote angiogenesis in tissue-engineering applications. The results from the study also show that molecules can obtain completely new functions when presented on materials, and verifying the biological effects after functionalizing materials is thus always recommended.

8.
Theranostics ; 8(16): 4462-4476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214632

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR2) is a key mediator of angiogenesis and therefore a promising therapeutic target in malignancies including glioblastoma multiforme (GBM). Molecular imaging of VEGFR2 expression may enable patient stratification for antiangiogenic therapy. The goal of the current study was to evaluate the capacity of the novel anti-VEGFR2 biparatopic affibody conjugate (ZVEGFR2-Bp2) for in vivo visualization of VEGFR2 expression in GBM. Methods: ZVEGFR2-Bp2 coupled to a NODAGA chelator was generated and radiolabeled with indium-111. The VEGFR2-expressing murine endothelial cell line MS1 was used to evaluate in vitro binding specificity and affinity, cellular processing and targeting specificity in mice. Further tumor targeting was studied in vivo in GL261 glioblastoma orthotopic tumors. Experimental imaging was performed. Results: [111In]In-NODAGA-ZVEGFR2-Bp2 bound specifically to VEGFR2 (KD=33±18 pM). VEGFR2-mediated accumulation was observed in liver, spleen and lungs. The tumor-to-organ ratios 2 h post injection for mice bearing MS1 tumors were approximately 11 for blood, 15 for muscles and 78 for brain. Intracranial GL261 glioblastoma was visualized using SPECT/CT. The activity uptake in tumors was significantly higher than in normal brain tissue. The tumor-to-cerebellum ratios after injection of 4 µg [111In]In-NODAGA-ZVEGFR2-Bp2 were significantly higher than the ratios observed for the 40 µg injected dose and for the non-VEGFR2 binding size-matched conjugate, demonstrating target specificity. Microautoradiography of cryosectioned CNS tissue was in good agreement with the SPECT/CT images. Conclusion: The anti-VEGFR2 affibody conjugate [111In]In-NODAGA-ZVEGFR2-Bp2 specifically targeted VEGFR2 in vivo and visualized its expression in a murine GBM orthotopic model. Tumor-to-blood ratios for [111In]In-NODAGA-ZVEGFR2-Bp2 were higher compared to other VEGFR2 imaging probes. [111In]In-NODAGA-ZVEGFR2-Bp2 appears to be a promising probe for in vivo noninvasive visualization of tumor angiogenesis in glioblastoma.


Assuntos
Células Endoteliais/química , Glioma/diagnóstico por imagem , Glioma/patologia , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Anticorpos/administração & dosagem , Linhagem Celular , Camundongos , Estudo de Prova de Conceito , Proteínas Recombinantes de Fusão/administração & dosagem , Sensibilidade e Especificidade
9.
Cell Mol Life Sci ; 73(8): 1671-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26552422

RESUMO

Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/patologia , Proteínas Recombinantes de Fusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Afinidade de Anticorpos/imunologia , Sítios de Ligação , Linhagem Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação , Ligação Proteica/imunologia , Proteínas Recombinantes de Fusão/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Ramucirumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...