Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrobiyol Bul ; 44(4): 561-9, 2010 Oct.
Artigo em Turco | MEDLINE | ID: mdl-21063968

RESUMO

Recently, the diagnosis of pulmonary tuberculosis (TB) has based on smear microscopy in the Direct Observed Treatment Strategy (DOTS) programme which provides the basis of treatment worldwide. Microscopic detection of AFB (Acid-Fast Bacilli) is one of the main components in the National TB Control Programmes (NTCP). Precision level in microscopy procedures and evaluations are the most important steps for accurate diagnosis of the disease and to initiate proper treatment. Therefore, the external quality assessment (EQA) is the most important implement to provide the reliability and validity of tests. In countries where NTCP are performed, this task is fulfilled by the National Reference Laboratories (NRL) according to the guidelines of the World Health Organization (WHO). For this purpose a pilot study was initiated by the central NRL of Turkey for EQA of AFB smear microscopy as part of the NTCP on January 1, 2005. A total of 5 laboratories of which 2 were district TB laboratories (A, B), 2 were tuberculosis control dispensaries (C, D), 1 was a national reference laboratory (E), participated in this study. Blind re-checking method (re-examination of randomly selected slides) was used for the evaluation, and the slides were sent to the central NRL with 3 months interval, four times a year, selected according to LQAS (Lot Quality Assurance Sampling) guides. In the re-evaluation of the slides, false positivity (FP), false negativity (FN) and quantification errors (QE) were noted. Laboratory A, sent totally 525 slides between January 1, 2005 and April 1, 2008. In the result of re-checking, 514 (97.9%) slides were found concordant, and 11 (2.1%) were discordant (10 FP, 1 FN). Laboratory B, participated in the study between October 1, 2005 and July 1, 2006 and of the 67 re-examined slides, 60 (89.5%) were concordant and 7 (10.5%) were discordant (2 FP, 0 FN, 5 QE). Laboratory C, sent 235 slides between January 1, 2005 and April 1, 2006; of them 218 (92.8%) were detected as compatible and 17 (7.2%) slides were incompatible (4 FP, 9 FN, 4 QE). Laboratory D, participated in QC for only once between January 1, 2008 and April 1, 2008; and all the 50 slides were found compatible, with no FP, FN and QE. Laboratory E, was included in the study between January 1, 2005 and January 1, 2008 and of the 696 re-checked slides, 690 (99.1%) were reported as compatible and 6 (0.9%) were incompatible (3 FN, 3 QE). Following EQA, on-site evaluation of the laboratories with major errors, was performed and necessary adjustments and training were done. In conclusion, external quality control measures for AFB microscopy is crucial and essential for the tuberculosis laboratory performances for accurate and reliable results.


Assuntos
Técnicas Bacteriológicas/normas , Laboratórios/normas , Ensaio de Proficiência Laboratorial , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/diagnóstico , Humanos , Amostragem para Garantia da Qualidade de Lotes , Projetos Piloto , Controle de Qualidade , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia
2.
Mikrobiyol Bul ; 41(3): 403-9, 2007 Jul.
Artigo em Turco | MEDLINE | ID: mdl-17933251

RESUMO

The aim of this study was to investigate the susceptibility rates of Mycobacterium tuberculosis strains sent to Refik Saydam Hygiene Center, Tuberculosis Reference and Research Laboratory, Ankara, from seven different regional tuberculosis laboratories between the 1999-2002 period against major antituberculous drugs. The sensitivities of a total 505 M. tuberculosis strains to isoniazid (INAH), rifampicin (RIF), streptomycin (SM) and ethambutol (EMB) were determined by using proportion method in Lowenstein-Jensen medium. Of the strains, 385 (76.2%) were found sensitive to all of the tested drugs, while 120 strains were resistant to at least one of the antituberculous drugs. The resistant strains showed 14 different resistance patterns. The resistance rates were detected as 13.3% for INAH and RIF (67 strains of each), 9.1% for SM (46 strains), and 3.4% (17 strains) for EMB. Multidrug resistant (INAH+RIF) M. tuberculosis was 7.9% (40 strains). The highest resistance rate to INAH, RIF and EMB (21.2%, 21.2% and 10.6%, respectively) was detected in the isolates which were sent from Bursa province (located in northwestern Turkey); the highest SM (18.8%) and multidrug resistance (INAH+RIF) rates (18.8% and 10.6%, respectively) were detected in the strains sent from Elazig and Van provinces (both located in eastern Turkey). Since the inappropriate use of the first and second line antituberculous drugs leads to the development and spread of the resistant strains, "Directly Observed Therapy Shortcourse (DOTS)" is a very important practice. Therefore regional tuberculosis laboratories should be worth considering as the chains of a well-organized national laboratory network, in order to detect the antituberculous drug resistance patterns of the M. tuberculosis strains over the country.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Etambutol/farmacologia , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Estreptomicina/farmacologia , Turquia
3.
J Chem Phys ; 124(13): 134911, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16613481

RESUMO

We develop a dynamic optimization technique for determining optimum folding pathways of proteins starting from different initial configurations. A coarse-grained Go model is used. Forces acting on each bead are (i) the friction force, (ii) forces from bond length constraints, (iii) excluded volume constraints, and (iv) attractive forces between residue pairs that are in contact in the native state. An objective function is defined as the total attractive energy between nonbonded residues, which are neighbors in the native state. The objective function is minimized over all feasible paths, satisfying bond length and excluded volume constraints. The optimization problem is nonconvex and contains a large number of constraints. An augmented Lagrangian method with a penalty barrier function was used to solve the problem. The method is applied to a 36-residue protein, chicken villin headpiece. Sequences of events during folding of the protein are determined for various pathways and analyzed. The relative time scales are compared and scaled according to experimentally measured events. Formation times of the helices, turn, and the loop agree with experimental data. We obtain the overall folding time of the protein in the range of 600 ns-1.2 micros that is smaller than the experimental result of 4-5 micros, showing that the optimal folding times that we obtain may be possible lower bounds. Time dependent variables during folding and energies associated with short- and long-range interactions between secondary structures are analyzed in modal space using Karhunen-Loeve expansion.


Assuntos
Modelos Teóricos , Dobramento de Proteína , Proteínas/química , Cinética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...