Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Microorganisms ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38792688

RESUMO

This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.

2.
Front Mol Biosci ; 11: 1347397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516184

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.

3.
Viruses ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140539

RESUMO

Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.


Assuntos
Culex , Culicidae , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , RNA Viral/genética , Mosquitos Vetores , Flavivirus/genética , Vírus do Nilo Ocidental/genética , Alemanha/epidemiologia
4.
Parasit Vectors ; 16(1): 369, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853399

RESUMO

BACKGROUND: Although haemosporidian parasites may cause considerable health and economic problems in aviaries, there is limited understanding of the vectors transmitting them. Mosquito-borne Plasmodium species are responsible for the deaths of numerous exotic (= immunologically naïve) birds in zoos every year, while native birds are adapted to the parasites and largely protected by an effective immune response. METHODS: Mosquitoes were collected in bird/animal parks, wetlands and private gardens in various regions of Germany from 2020 to 2022. Females were pooled with up to 10 specimens according to taxon, location and date. Extracted DNA was screened for avian Haemosporida-specific mitochondrial rDNA using real-time polymerase chain reaction (PCR). Positive samples were amplified by a Plasmodium/Haemoproteus-specific nested PCR targeting the partial cytochrome b gene, followed by sequencing of the PCR product for species identification. Sequences were checked against GenBank and MalAvi databases. RESULTS: PCR of 2633 pools with 8834 female mosquitoes signalled infection with Plasmodium in 46 pools and with Haemoproteus in one pool. Further amplification and sequencing demonstrated the occurrence of Haemoproteus majoris lineage PARUS1 (n = 1) as well as several Plasmodium species and lineages, including Plasmodium relictum SGS1 (n = 16) and GRW11 (n = 1), P. matutinum LINN1 (n = 13), P. vaughani SYAT05 (n = 10), P. circumflexum TURDUS01 (n = 3), P. cathemerium PADOM02 (n = 1) and Plasmodium sp. SYBOR02 (n = 1) and PLOPRI01 (n = 1). The infections were detected in Culex pipiens sensu lato (n = 40), Culiseta morsitans/fumipennis (n = 6) and Aedes cinereus/geminus (n = 1). CONCLUSIONS: Although the overall Plasmodium minimum infection rate (5.2) appears to be low, the results demonstrated not only the ongoing circulation of Plasmodium parasites in the German mosquito population, but also the occurrence of eight distinct Plasmodium lineages, with three of them (PADOM02, SYBOR02, PLOPRI01) being detected in Germany for the first time. This study highlights the importance of conducting mosquito-borne pathogen surveillance studies simultaneously targeting vectors and vertebrate hosts, as certain species may be detected more readily in their vectors than in their vertebrate hosts, and vice versa.


Assuntos
Aedes , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Feminino , Animais , Mosquitos Vetores/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Malária Aviária/parasitologia
5.
Biomolecules ; 13(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371574

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.


Assuntos
Glicosilfosfatidilinositóis , Micelas , Animais , Humanos , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Lipólise , Membrana Celular/metabolismo , Glicolipídeos/metabolismo , Mamíferos/metabolismo
6.
Biomolecules ; 13(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238725

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Animais , Glicosilfosfatidilinositóis/análise , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Glicolipídeos/metabolismo , Proteólise , Mamíferos/metabolismo
7.
Arch Insect Biochem Physiol ; 113(3): e22013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36973856

RESUMO

Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.


Assuntos
Triatoma , Animais , Saliva , Muramidase , Comportamento Alimentar , Glândulas Salivares
8.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902257

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer leaflet of eukaryotic plasma membranes (PMs) only by carboxy-terminal covalently coupled GPI. GPI-APs are known to be released from the surface of donor cells in response to insulin and antidiabetic sulfonylureas (SUs) by lipolytic cleavage of the GPI or upon metabolic derangement as full-length GPI-APs with the complete GPI attached. Full-length GPI-APs become removed from extracellular compartments by binding to serum proteins, such as GPI-specific phospholipase D (GPLD1), or insertion into the PMs of acceptor cells. Here, the interplay between the lipolytic release and intercellular transfer of GPI-APs and its potential functional impact was studied using transwell co-culture with human adipocytes as insulin-/SU-responsive donor cells and GPI-deficient erythroleukemia as acceptor cells (ELCs). Measurement of the transfer as the expression of full-length GPI-APs at the ELC PMs by their microfluidic chip-based sensing with GPI-binding α-toxin and GPI-APs antibodies and of the ELC anabolic state as glycogen synthesis upon incubation with insulin, SUs and serum yielded the following results: (i) Loss of GPI-APs from the PM upon termination of their transfer and decline of glycogen synthesis in ELCs, as well as prolongation of the PM expression of transferred GPI-APs upon inhibition of their endocytosis and upregulated glycogen synthesis follow similar time courses. (ii) Insulin and SUs inhibit both GPI-AP transfer and glycogen synthesis upregulation in a concentration-dependent fashion, with the efficacies of the SUs increasing with their blood glucose-lowering activity. (iii) Serum from rats eliminates insulin- and SU-inhibition of both GPI-APs' transfer and glycogen synthesis in a volume-dependent fashion, with the potency increasing with their metabolic derangement. (iv) In rat serum, full-length GPI-APs bind to proteins, among them (inhibited) GPLD1, with the efficacy increasing with the metabolic derangement. (v) GPI-APs are displaced from serum proteins by synthetic phosphoinositolglycans and then transferred to ELCs with accompanying stimulation of glycogen synthesis, each with efficacies increasing with their structural similarity to the GPI glycan core. Thus, both insulin and SUs either block or foster transfer when serum proteins are depleted of or loaded with full-length GPI-APs, respectively, i.e., in the normal or metabolically deranged state. The transfer of the anabolic state from somatic to blood cells over long distance and its "indirect" complex control by insulin, SUs and serum proteins support the (patho)physiological relevance of the intercellular transfer of GPI-APs.


Assuntos
Adipócitos , Tecido Adiposo , Células Sanguíneas , Glicosilfosfatidilinositóis , Hipoglicemiantes , Insulina , Compostos de Sulfonilureia , Animais , Humanos , Ratos , Células Sanguíneas/metabolismo , Glicogênio/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Insulina/farmacologia , Compostos de Sulfonilureia/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Transporte Proteico/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Adipócitos/efeitos dos fármacos , Técnicas de Cocultura
9.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806423

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs), which are anchored at the outer leaflet of plasma membranes (PM) only by a carboxy-terminal GPI glycolipid, are known to fulfill multiple enzymic and receptor functions at the cell surface. Previous studies revealed that full-length GPI-APs with the complete GPI anchor attached can be released from and inserted into PMs in vitro. Moreover, full-length GPI-APs were recovered from serum, dependent on the age and metabolic state of rats and humans. Here, the possibility of intercellular control of metabolism by the intercellular transfer of GPI-APs was studied. Mutant K562 erythroleukemia (EL) cells, mannosamine-treated human adipocytes and methyl-ß-cyclodextrin-treated rat adipocytes as acceptor cells for GPI-APs, based on their impaired PM expression of GPI-APs, were incubated with full-length GPI-APs, prepared from rat adipocytes and embedded in micelle-like complexes, or with EL cells and human adipocytes with normal expression of GPI-APs as donor cells in transwell co-cultures. Increases in the amounts of full-length GPI-APs at the PM of acceptor cells as a measure of their transfer was assayed by chip-based sensing. Both experimental setups supported both the transfer and upregulation of glycogen (EL cells) and lipid (adipocytes) synthesis. These were all diminished by serum, serum GPI-specific phospholipase D, albumin, active bacterial PI-specific phospholipase C or depletion of total GPI-APs from the culture medium. Serum inhibition of both transfer and glycogen/lipid synthesis was counteracted by synthetic phosphoinositolglycans (PIGs), which closely resemble the structure of the GPI glycan core and caused dissociation of GPI-APs from serum proteins. Finally, large, heavily lipid-loaded donor and small, slightly lipid-loaded acceptor adipocytes were most effective in stimulating transfer and lipid synthesis. In conclusion, full-length GPI-APs can be transferred between adipocytes or between blood cells as well as between these cell types. Transfer and the resulting stimulation of lipid and glycogen synthesis, respectively, are downregulated by serum proteins and upregulated by PIGs. These findings argue for the (patho)physiological relevance of the intercellular transfer of GPI-APs in general and its role in the paracrine vs. endocrine (dys)regulation of metabolism, in particular. Moreover, they raise the possibility of the use of full-length GPI-APs as therapeutics for metabolic diseases.


Assuntos
Adipócitos , Glicosilfosfatidilinositóis , Adipócitos/metabolismo , Animais , Membrana Celular/metabolismo , Glicogênio/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas/metabolismo , Ratos
10.
Parasitol Res ; 121(7): 2033-2041, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507065

RESUMO

Investigating parameters influencing natural infections with Trypanosoma cruzi via the skin, the diameters of mouthparts of different stages of triatomines vectors were measured to determine the size of the channel accessible for T. cruzi during cutaneous infection. The mean diameters of the skin-penetrating mandibles of first to fifth instar nymphs of the vector Triatoma infestans increased from 18 to 65 µm. The mean diameter in fourth instar nymphs of Dipetalogaster maxima was 86 µm. Different numbers of isolated vector-derived metacyclic trypomastigotes (10-10,000) were injected intradermally into mice. Prepatent periods, parasitemia and mortality rates were compared with those of mice obtaining 10,000 metacyclic trypomastigotes that are usually present in the first drop of faeces onto the feeding wounds of fifth and fourth instar nymphs of T. infestans and D. maxima, respectively. After injection of 50-10,000 T. cruzi, in all 42 mice the infection developed. An injection of 10 parasites induced an infection in 8 out of 15 mice. With increasing doses of parasites, prepatent periods tended to decrease. The level of parasitemia was higher after injection of the lowest dose. Except for one mouse all infected mice died. After placement of 10,000 metacyclic trypomastigotes onto the feeding wound of fifth or fourth instar nymphs of T. infestans and D. maxima, respectively, the infection rates of the groups, prepatent periods and the levels of parasitemia of T. cruzi in mice indicated that about 10-1,000 metacyclic trypomastigotes entered the skin via this route. For the first time, the present data emphasise the risk of an infection by infectious excreta of triatomines deposited near the feeding wound and the low number of invading parasites.


Assuntos
Doença de Chagas , Parasitos , Triatoma , Trypanosoma cruzi , Animais , Doença de Chagas/parasitologia , Camundongos , Ninfa , Parasitemia/parasitologia , Triatoma/parasitologia
11.
Front Plant Sci ; 13: 794171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185977

RESUMO

Evolutionary slowdowns in diversification have been inferred in various plant and animal lineages. Investigation based on diversification models integrated with environmental factors and key characters could provide critical insights into this diversification trend. We evaluate diversification rates in the Cirrhopetalum alliance (Bulbophyllum, Orchidaceae subfam. Epidendroideae) using a time-calibrated phylogeny and assess the role of Crassulacean acid metabolism (CAM) as a hypothesised key innovation promoting the spectacular diversity of orchids, especially those with an epiphytic habit. An explosive early speciation in the Cirrhopetalum alliance is evident, with the origin of CAM providing a short-term advantage under the low atmospheric CO2 concentrations (pCO2) associated with cooling and aridification in the late Miocene. A subsequent slowdown of diversification in the Cirrhopetalum alliance is possibly explained by a failure to keep pace with pCO2 dynamics. We further demonstrate that extinction rates in strong CAM lineages are ten times higher than those of C3 lineages, with CAM not as evolutionarily labile as previously assumed. These results challenge the role of CAM as a "key innovation" in the diversification of epiphytic orchids.

12.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680568

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are anchored at the surface of mammalian blood and tissue cells through a carboxy-terminal GPI glycolipid. Eventually, they are released into incubation medium in vitro and blood in vivo and subsequently inserted into neighboring cells, potentially leading to inappropriate surface expression or lysis. To obtain first insight into the potential (patho)physiological relevance of intercellular GPI-AP transfer and its biochemical characterization, a cell-free chip- and microfluidic channel-based sensing system was introduced. For this, rat or human adipocyte or erythrocyte plasma membranes (PM) were covalently captured by the TiO2 chip surface operating as the acceptor PM. To measure transfer between PM, donor erythrocyte or adipocyte PM were injected into the channels of a flow chamber, incubated, and washed out, and the type and amount of proteins which had been transferred to acceptor PM evaluated with specific antibodies. Antibody binding was detected as phase shift of horizontal surface acoustic waves propagating over the chip surface. Time- and temperature-dependent transfer, which did not rely on fusion of donor and acceptor PM, was detected for GPI-APs, but not typical transmembrane proteins. Transfer of GPI-APs was found to be prevented by α-toxin, which binds to the glycan core of GPI anchors, and serum proteins in concentration-dependent fashion. Blockade of transfer, which was restored by synthetic phosphoinositolglycans mimicking the glycan core of GPI anchors, led to accumulation in the chip channels of full-length GPI-APs in association with phospholipids and cholesterol in non-membrane structures. Strikingly, efficacy of transfer between adipocytes and erythrocytes was determined by the metabolic state (genotype and feeding state) of the rats, which were used as source for the PM and sera, with upregulation in obese and diabetic rats and counterbalance by serum proteins. The novel chip-based sensing system for GPI-AP transfer may be useful for the prediction and stratification of metabolic diseases as well as elucidation of the putative role of intercellular transfer of cell surface proteins, such as GPI-APs, in (patho)physiological mechanisms.

13.
Res Rep Trop Med ; 12: 63-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093053

RESUMO

This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.

14.
New Phytol ; 231(3): 1236-1248, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960438

RESUMO

Despite growing evidence that niche shifts are more common in flowering plants than previously thought, little is known of whether such shifts are promoted by changes in photosynthetic pathways. Here we combine the most complete phylogeny for epiphytic Malagasy Bulbophyllum orchids (c. 210 spp.) with climatic niche and carbon isotope ratios to infer the group's spatial-temporal history, and the role of strongly expressed crassulacean acid metabolism (CAM) in facilitating niche shifts and diversification. We find that most extant species still retain niche (Central Highland) and photosynthesis (C3 ) states as present in the single mid-Miocene (c. 12.70 million yr ago (Ma)) ancestor colonizing Madagascar. However, we also infer a major transition to CAM, linked to a late Miocene (c. 7.36 Ma) invasion of species from the sub-humid highland first into the island's humid eastern coastal, and then into the seasonally dry 'Northwest Sambirano' rainforests, yet without significant effect on diversification rates. These findings indicate that CAM in tropical epiphytes may be selectively advantageous even in high rainfall habitats, rather than presenting a mere adaptation to dry environments or epiphytism per se. Overall, our study qualifies CAM as an evolutionary 'gateway' trait that considerably widened the spatial-ecological amplitude of Madagascar's most species-rich orchid genus.


Assuntos
Orchidaceae , Metabolismo Ácido das Crassuláceas , Ecossistema , Madagáscar , Filogenia
15.
Biomedicines ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802150

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), which are anchored at the surface of mammalian cultured and tissue cells through a carboxy-terminal GPI glycolipid, are susceptible to release into incubation medium and (rat and human) blood, respectively, in response to metabolic stress and ageing. Those GPI-APs with the complete GPI still attached form micelle-like complexes together with (lyso)phospholipids and cholesterol and are prone to degradation by serum GPI-specific phospholipase D (GPLD1), as well as translocation to the surface of acceptor cells in vitro. In this study, the interaction of GPI-APs with GPLD1 or other serum proteins derived from metabolically deranged rat and humans and their translocation were measured by microfluidic chip- and surface acoustic wave-based sensing of micelle-like complexes reconstituted with model GPI-APs. The effect of GPI-AP translocation on the integrity of the acceptor cell surface was studied as lactate dehydrogenase release. For both rats and humans, the dependence of serum GPLD1 activity on the hyperglycemic/hyperinsulinemic state was found to be primarily based on upregulation of the interaction of GPLD1 with micelle-like GPI-AP complexes, rather than on its amount. In addition to GPLD1, other serum proteins were found to interact with the GPI phosphoinositolglycan of full-length GPI-APs. Upon incubation of rat adipocytes with full-length GPI-APs, their translocation from the micelle-like complexes (and also with lower efficacy from reconstituted high-density lipoproteins and liposomes) to acceptor cells was observed, accompanied by upregulation of their lysis. Both GPI-AP translocation and adipocyte lysis became reduced in the presence of serum proteins, including (inhibited) GPLD1. The reduction was higher with serum from hyperglycemic/hyperinsulinemic rats and diabetic humans compared to healthy ones. These findings suggest that the deleterious effects of full-length GPI-APs following spontaneous release into the circulation of metabolically deranged rats and humans are counterbalanced by upregulated interaction of their GPI anchor with GPLD1 and other serum proteins. Thereby, translocation of GPI-APs to blood and tissue cells and their lysis are prevented. The identification of GPI-APs and serum proteins interacting within micelle-like complexes may facilitate the prediction and stratification of diseases that are associated with impaired cell-surface anchorage of GPI-APs, such as obesity and diabetes.

16.
Sci Total Environ ; 752: 141760, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890826

RESUMO

Tropical forests are the main reservoirs for global biodiversity and climate control. As secondary forests are now more widespread than primary forests, understanding their functioning and role in the biosphere is increasingly important. This includes understanding how they achieve stability, how they accumulate species and build biodiversity and how they cycle nutrients and carbon. This study investigates how we can restore tropical secondary forests to resemble high biomass, highly biodiverse and stable ecosystems seen today only in primary, undisturbed forests. The study used historic aerial photographs and recent high-resolution satellite images from 1945 to 2014 to map forest patches with five age categories, from 14-years to over 70-years, in Hong Kong's degraded tropical landscape. A forest inventory comprising 28 quadrats provided a rare opportunity to relate patterns of species composition at different stages during the succession with topographic and soil characteristics. The topographic variables accounted for 15% of the variance in species abundance, and age of forest stands explained 29%. Species richness rapidly increased after the first 15 years, but was lower in old-growth, than in medium age forest. This is attributed to the inability of late-successional species to disperse into the young forests as the natural dispersal agents (birds, mammals) have been lost. Light-loving pioneers which are unable to tolerate the shade of older forests, cannot regenerate in their own shade, therefore species diversity declines after a few decades. For ecosystem restoration in tropical secondary forests, introduction of late-successional species is necessary to assist natural succession, given the absence of native fauna, seed dispersal agents, and the surrounding altered environment. We also show that remote sensing can play a pivotal role in understanding the recovery and functioning of secondary forest regeneration as its contribution to the biosphere is increasingly important.

17.
Parasit Vectors ; 13(1): 623, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334377

RESUMO

BACKGROUND: Aedes japonicus japonicus, first detected in Europe in 2000 and considered established in Germany 10 years later, is of medical importance due to its opportunistic biting behaviour and its potential to transmit pathogenic viruses. Its seasonal phenology, temperature and land use preference related to oviposition in newly colonised regions remain unclear, especially in the context of co-occurring native mosquito species. METHODS: Focussing on regions in Germany known to be infested by Ae. japonicus japonicus, we installed ovitraps in different landscapes and their transition zones and recorded the oviposition activity of mosquitoes in relation to season, temperature and land use (arable land, forest, settlement) in two field seasons (May-August 2017, April-November 2018). RESULTS: Ae. japonicus japonicus eggs and larvae were encountered in 2017 from June to August and in 2018 from May to November, with a markedly high abundance from June to September in rural transition zones between forest and settlement, limited to water temperatures below 30 °C. Of the three native mosquito taxa using the ovitraps, the most frequent was Culex pipiens s.l., whose offspring was found in high numbers from June to August at water temperatures of up to 35 °C. The third recorded species, Anopheles plumbeus, rarely occurred in ovitraps positioned in settlements and on arable land, but was often associated with Ae. japonicus japonicus. The least frequent species, Aedes geniculatus, was mostly found in ovitraps located in the forest. CONCLUSIONS: The transition zone between forest and settlement was demonstrated to be the preferred oviposition habitat of Ae. japonicus japonicus, where it was also the most frequent container-inhabiting mosquito species in this study. Compared to native taxa, Ae. japonicus japonicus showed an extended seasonal activity period, presumably due to tolerance of colder water temperatures. Higher water temperatures and arable land represent distribution barriers to this species. The frequently co-occurring native species An. plumbeus might be useful as an indicator for potentially suitable oviposition habitats of Ae. japonicus japonicus in hitherto uncolonised regions. The results contribute to a better understanding of mosquito ecology and provide a basis for more targeted monitoring, distribution modelling and risk management of mosquitoes.


Assuntos
Aedes/fisiologia , Infecções por Arbovirus/prevenção & controle , Espécies Introduzidas , Mosquitos Vetores/fisiologia , Animais , Mudança Climática , Feminino , Alemanha/epidemiologia , Oviposição , Estações do Ano
18.
Mech Ageing Dev ; 190: 111307, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32628941

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.


Assuntos
Adipócitos/fisiologia , Envelhecimento/fisiologia , Membrana Celular/fisiologia , Glicosilfosfatidilinositóis/metabolismo , Fluidez de Membrana/fisiologia , Fosfolipase D/metabolismo , Animais , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Análise Serial de Proteínas , Ratos , Regulação para Cima
19.
Commun Biol ; 3(1): 317, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561898

RESUMO

Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.


Assuntos
Nitrogênio , Solo/química , Árvores , Biodiversidade , Fabaceae , Florestas , Nitrogênio/análise , Fixação de Nitrogênio , Clima Tropical
20.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085406

RESUMO

(1) Background: Acute administration of the cannabinoid receptor 1 (CB1R) inverse agonist Rimonabant (SR141716A) to fed Wistar rats was shown to elicit a rapid and short-lasting elevation of serum free fatty acids. (2) Methods: The effect of Rimonabant on lipolysis in isolated primary rat adipocytes was studied to raise the possibility for direct mechanisms not involving the (hypothalamic) CB1R. (3) Results: Incubation of these cells with Rimonabant-stimulated lipolysis to up to 25% of the maximal isoproterenol effect, which was based on both CB1R-dependent and independent mechanisms. The CB1R-dependent one was already effective at Rimonabant concentrations of less than 1 µM and after short-term incubation, partially additive to ß-adrenergic agonists and blocked by insulin and, in part, by adenosine deaminase, but not by propranolol. It was accompanied by protein kinase A (PKA)-mediated association of hormone-sensitive lipase (HSL) with lipid droplets (LD) and dissociation of perilipin-1 from LD. The CB1R-independent stimulation of lipolysis was observed only at Rimonabant concentrations above 1 µM and after long-term incubation and was not affected by insulin. It was recapitulated by a cell-free system reconstituted with rat adipocyte LD and HSL. Rimonabant-induced cell-free lipolysis was not affected by PKA-mediated phosphorylation of LD and HSL, but abrogated by phospholipase digestion or emulsification of the LD. Furthermore, LD isolated from adipocytes and then treated with Rimonabant (>1 µM) were more efficient substrates for exogenously added HSL compared to control LD. The CB1R-independent lipolysis was also demonstrated in primary adipocytes from fed rats which had been treated with a single dose of Rimonabant (30 mg/kg). (4) Conclusions: These data argue for interaction of Rimonabant (at high concentrations) with both the LD surface and the CB1R of primary rat adipocytes, each leading to increased access of HSL to LD in phosphorylation-independent and dependent fashion, respectively. Both mechanisms may lead to direct and acute stimulation of lipolysis at peripheral tissues upon Rimonabant administration and represent targets for future obesity therapy which do not encompass the hypothalamic CB1R.


Assuntos
Adipócitos/metabolismo , Agonismo Inverso de Drogas , Lipólise , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Sistema Livre de Células , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos Wistar , Esterol Esterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...