Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1405(1): 89-101, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28633193

RESUMO

The majority of tight junction (TJ) proteins restrict the paracellular permeation of solutes via their extracellular loops (ECLs). Tricellulin tightens tricellular TJs (tTJs) and regulates bicellular TJ (bTJ) proteins. We demonstrate that the addition of recombinantly produced extracellular loop 2 (ECL2) of tricellulin opens cellular barriers. The peptidomimetic trictide, a synthetic peptide derived from tricellulin ECL2, increases the passage of ions, as well as of small and larger molecules up to 10 kDa, between 16 and 30 h after application to human epithelial colorectal adenocarcinoma cell line 2. Tricellulin and lipolysis-stimulated lipoprotein receptor relocate from tTJs toward bTJs, while the TJ proteins claudin-1 and occludin redistribute from bTJs to the cytosol. Analyzing the opening of the tricellular sealing tube by the peptidomimetic using super-resolution stimulated-emission depletion microscopy revealed a tricellulin-free area at the tricellular region. Cis-interactions (as measured by fluorescence resonance energy transfer) of tricellulin-tricellulin (tTJs), tricellulin-claudin-1, tricellulin-marvelD3, and occludin-occludin (bTJs) were strongly affected by trictide treatment. Circular dichroism spectroscopy and molecular modeling suggest that trictide adopts a ß-sheet structure, resulting in a peculiar interaction surface for its binding to tricellulin. In conclusion, trictide is a novel and promising tool for overcoming cellular barriers at bTJs and tTJs with the potential to transiently improve drug delivery.


Assuntos
Células Epiteliais/efeitos dos fármacos , Proteína 2 com Domínio MARVEL/farmacologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Domínios e Motivos de Interação entre Proteínas , Receptores de LDL/metabolismo
2.
Mol Neurodegener ; 10: 53, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471478

RESUMO

Affinity-based techniques, both for enrichment or depletion of proteins of interest, suffer from unwanted interactions between the bait or matrix material and molecules different from the original target. This effect was quantitatively studied by applying two common procedures for the depletion of albumin/gamma immunoglobulin to human cerebrospinal fluid. Proteins of the depleted and the column-bound fraction were identified by mass spectrometry, employing (18)O labeling for quantitation of their abundance. To different extents, the depletion procedures caused the loss of proteins previously suggested as biomarker candidates for neurological diseases. This is an important phenomenon to consider when quantifying protein levels in biological fluids.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Proteômica , Animais , Biomarcadores/líquido cefalorraquidiano , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Antioxid Redox Signal ; 23(13): 1035-49, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25919114

RESUMO

UNLABELLED: Tight junctions (TJs) seal paracellular clefts in epithelia/endothelia and form tissue barriers for proper organ function. TJ-associated marvel proteins (TAMPs; tricellulin, occludin, marvelD3) are thought to be relevant to regulation. Under normal conditions, tricellulin tightens tricellular junctions against macromolecules. Traces of tricellulin occur in bicellular junctions. AIMS: As pathological disturbances have not been analyzed, the structure and function of human tricellulin, including potentially redox-sensitive Cys sites, were investigated under reducing/oxidizing conditions at 3- and 2-cell contacts. RESULTS: Ischemia, hypoxia, and reductants redistributed tricellulin from 3- to 2-cell contacts. The extracellular loop 2 (ECL2; conserved Cys321, Cys335) trans-oligomerized between three opposing cells. Substitutions of these residues caused bicellular localization. Cys362 in transmembrane domain 4 contributed to bicellular heterophilic cis-interactions along the cell membrane with claudin-1 and marvelD3, while Cys395 in the cytosolic C-terminal tail promoted homophilic tricellullar cis-interactions. The Cys sites included in homo-/heterophilic bi-/tricellular cis-/trans-interactions contributed to cell barrier tightness for small/large molecules. INNOVATION: Tricellulin forms TJs via trans- and cis-association in 3-cell contacts, as demonstrated electron and quantified fluorescence microscopically; it tightens 3- and 2-cell contacts. Tricellulin's ECL2 specifically seals 3-cell contacts redox dependently; a structural model is proposed. CONCLUSIONS: TAMP ECL2 and claudins' ECL1 share functionally and structurally similar features involved in homo-/heterophilic tightening of cell-cell contacts. Tricellulin is a specific redox sensor and sealing element at 3-cell contacts and may compensate as a redox mediator for occludin loss at 2-cell contacts in vivo and in vitro. Molecular interaction mechanisms were proposed that contribute to tricellulin's function. In conclusion, tricellulin is a junctional redox regulator for ischemia-related alterations.


Assuntos
Cisteína/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Proteína 2 com Domínio MARVEL/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Sítios de Ligação , Hipóxia Celular , Permeabilidade da Membrana Celular , Cães , Células Epiteliais/fisiologia , Células HEK293 , Humanos , Isquemia/patologia , Rim/metabolismo , Rim/patologia , Proteína 2 com Domínio MARVEL/química , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
4.
Antioxid Redox Signal ; 22(1): 1-14, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988310

RESUMO

UNLABELLED: The paracellular cleft within epithelia/endothelia is sealed by tight junction (TJ) proteins. Their extracellular loops (ECLs) are assumed to control paracellular permeability and are targets of pathogenes. We demonstrated that claudin-1 is crucial for paracellular tightening. Its ECL1 is essential for the sealing and contains two cysteines conserved throughout all claudins. AIMS: We prove the hypothesis that this cysteine motif forms a redox-sensitive intramolecular disulfide bridge and, hence, the claudin-1-ECL1 constitutes a functional structure which is associated to ECLs of this and other TJ proteins. RESULTS: The structure and function of claudin-1-ECL1 was elucidated by investigating sequences of this ECL as synthetic peptides, C1C2, and as recombinant proteins, and exhibited a ß-sheet binding surface flanked by an α-helix. These sequences bound to different claudins, their ECL1, and peptides with nanomolar binding constants. C-terminally truncated C1C2 (-4aaC) opened cellular barriers and the perineurium. Recombinant ECL1 formed oligomers, and bound to claudin-1 expressing cells. Oligomerization and claudin association were abolished by reducing agents, indicating intraloop disulfide bridging and redox sensitivity. INNOVATION: The structural and functional model based on our in vitro and in vivo investigations suggested that claudin-1-ECL1 constitutes a functional and ECL-binding ß-sheet, stabilized by a shielded and redox-sensitive disulfide bond. CONCLUSION: Since the ß-sheet represents a consensus sequence of claudins and further junctional proteins, a general structural feature is implied. Therefore, our model is of general relevance for the TJ assembly in normal and pathological conditions. C1C2-4aaC is a new drug enhancer that is used to improve pharmacological treatment through tissue barriers.


Assuntos
Claudina-1/química , Claudina-1/metabolismo , Animais , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Imuno-Histoquímica , Imunoprecipitação , Oxirredução , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Junções Íntimas/metabolismo
5.
Fluids Barriers CNS ; 11: 14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002965

RESUMO

BACKGROUND: Highly abundant proteins in biological fluids such as serum or cerebrospinal fluid (CSF) can hinder the detection of proteins in lower abundance, e.g., potential biomarkers. Commercial products are available for the depletion of albumin and immunoglobulins (Igs), although most of these kits have not been validated for dog samples. The present study therefore examines the use of different types of depletion kits for dog CSF. FINDINGS: Three kits, with different mechanisms for the depletion of albumin and Igs, were tested with dog CSF specimens. One product significantly decreased the amount of albumin; with all kits, IgG was less efficiently removed than albumin. Mass spectrometry of the fractions eluted from the depletion columns revealed considerable co-depletion of other CSF proteins. CONCLUSIONS: A commercially available depletion kit was identified which depletes albumin and (to a lower extent) immunoglobulins from dog CSF. However, the limited efficacy and the concomitant loss of other proteins from the sample should be taken into account when using this product.

6.
J Control Release ; 185: 88-98, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24780266

RESUMO

The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using µ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve.


Assuntos
Claudina-1/química , Claudina-1/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Sequência de Aminoácidos , Analgesia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Linhagem Celular , Claudina-1/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Nervos Periféricos/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Junções Íntimas/metabolismo
7.
Antioxid Redox Signal ; 20(6): 855-67, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23923978

RESUMO

UNLABELLED: The tight junction (TJ) marker occludin is a 4-transmembrane domain (TMD) protein with unclear physiological and pathological functions, interacting with other TJ proteins. It oligomerizes and is redox sensitive. However, oligomerization sites and mechanisms are unknown. AIMS: To identify hypoxia-sensitive binding sites, we investigated the consequences of amino-acid substitutions of highly conserved cysteines in human occludin, under normal and hypoxic incubations. RESULTS: (i) The extracellular loop 2 (ECL2) showed homophilic trans- and cis-association between opposing cells and along the cell membrane, respectively, caused by a loop properly folded via an intraloop disulfide bridge between the shielded C216 and C237. Hypoxia and reductants prevented the associations. (ii) C82 in TMD1 directly cis-associated without disulfide formation. (iii) C76 in TMD1 and C148 in TMD2 limited the trans-interaction; C76 also limited occludin-related paracellular tightness and changed the strand morphology of claudin-1. (iv) The diminished binding strength found after substituting C82, C216, or C237 was accompanied by increased occludin mobility in the cell membrane. INNOVATION: The data enable the first experimentally proven structural model of occludin and its homophilic interaction sites, in which the ECL2, via intraloop disulfide formation, has a central role in occludin's hypoxia-sensitive oligomerization and to regulate the structure of TJs. CONCLUSION: Our findings support the new concept that occludin acts as a hypoxiasensor and contributes toward regulating the TJ assembly redox dependently. This is of pathogenic relevance for tissue barrier injury with reducing conditions. The ECL2 disulfide might be a model for four TMD proteins in TJs with two conserved cysteines in an ECL.


Assuntos
Cisteína/química , Ocludina/química , Ocludina/metabolismo , Membrana Celular/metabolismo , Humanos , Oxirredução , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...