Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(19): 5244-5250, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707228

RESUMO

This paper presents the design, manufacturing, and characterization of a three-dimensional (3D)-printed and electromagnetically actuated adjustable optical slit structure. The device comprises magnet-attached slits connected to the main frame via two springs controlled by external coils. To analyze the forces acting on the springs and simulate the mechanical behavior of the device, we developed both analytical and finite-element models. After fabricating the device using fused deposition, we conducted a series of tests to evaluate its performance. These tests included (1) analyzing the opacity of the slit blade as a function of its thickness, (2) measuring the temperature increase resulting from the power applied to the coils to determine the operable range of the structure, and (3) evaluating the hysteresis, repeatability, and resolution (minimum step) of the device. The experimental works were crucial to assessing the device's practicality and optimizing its performance for specific applications, which reveals a maximum slit width of ∼450µm, with ∼6.4µm step size within this study. Overall, our developed slit device has the potential to be useful in various optics-related laboratories due to its compatibility with conventional 1-inch (25.4 mm) diameter optomechanical mounts, compact form, low power consumption, and rapid prototyping capability with hybrid materials in a cost-friendly fashion, owing to the 3D-printing technology. We discuss an application where the adjustable slit is employed in a combined laser-scanning microscope and a spectrometer, highlighting its versatility and potential for the future.

2.
Appl Opt ; 61(18): 5375-5380, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256103

RESUMO

In this study, we present the design, manufacture, and implementation of a 3D-printed lens scanner-based beam steering for use in visible light communication (VLC) applications. The 5cm×5cm scanner is designed for low-cost 3D printing with fused deposition modeling using polylactic acid. Scanning is facilitated through electromagnetic actuation of the lens frame, carrying a conventional 25 mm lens, from two nearly orthogonal directions. The serpentine spring that connects the lens frame to the external frame is tailored to offer similar spring constants in the directions of actuation and has minimal (<1.5mm) sag due to the mass of the lens. The manufactured actuator was integrated on a miniaturized VLC test bed (70cm×40cm×40cm). Using the test bed, we characterized the applied voltage versus beam displacement behavior of the actuator in the lateral plane and demonstrated beam steering on a moving target with face-recognition feedback. The proposed scheme was targeted to offer an improved security measure in VLC through tracking the legitimate receiver (i.e., via face recognition) and uses the feedback to steer the focused light onto the targeted device. The joint use of focusing and steering features allows for the legitimate receiver to roam within the room while enjoying the improved secrecy due to the focused light. We calculate the secrecy capacity for the demonstrated approach, which compares favorably with a number of jamming, spatial modulation, and beam-forming counterparts. The presented actuator can be used with larger room dimensions, yet upscaling to larger illumination units will require the use of a lens having smaller focus to address a larger total steering angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...